STPM/SUEC PHYSICS FORMULAE SHEET

Physical quantities and units

Dimensions of physical quantities

Quantity	SI unit	Symbol	Dimension
time	second	S	Т
mass	kilogram	kg	М
length	metre	m	L
current	ampere	А	I
temperature	kelvin	К	θ
amount of	mole	mol	Ν
substance			
light	candela	cd	
intensity			

Prefix	Power	Abbreviation
peta	1015	Р
tera	10 ¹²	Т
giga	109	G
mega	106	М
kilo	10 ³	K
hector	10 ²	Н
deka	101	da
deci	10^-1	d
centi	10 ⁻²	С
milli	10 ⁻³	m
micro	10 ⁻⁶	μ
nano	10 ⁻⁹	n
pico	10 ⁻¹²	р
femto	10 ⁻¹⁵	f

Scalar and vectors

Resultant vector, $C = \operatorname{vector} A + \operatorname{vector} B$ x-component: $F_x = F \cos \theta$

y-component:
$$F_y = F \sin \theta$$

angle $\theta = tan^{-1} \left(\frac{F_y}{F_y}\right)$

$$F = \sqrt{F_x^2 + F_y^2}$$

$$P \cdot Q = PQ \cos \theta, |P \times Q| = PQ \sin \theta$$

Uncertainties in measurements

If $l \pm \Delta l$, where Δl is absolute uncertainty

Fractional uncertainty =
$$\frac{\Delta l}{l}$$

Percentage uncertainty = $\frac{\Delta l}{l} \times 100\%$

Kinematics and dynamics

Linear motion and projectile

$$v = \frac{s}{t} (ms^{-1})$$
$$v^{2} = u^{2} + 2as$$
$$v = u + at$$
$$s = ut + \frac{1}{2}at^{2}$$

 $a = \frac{v - u}{t} (ms^{-2})$ $a = \frac{1}{2} (u + v)t$ Greatest height, $H = \frac{u^2 sin^2 \theta}{2g}$ Range , $R = \frac{u^2 sin 2\theta}{g}$ Time of flight, $T = \frac{2u sin \theta}{2g}$ Maximum range, $R = \frac{u^2}{g}$, where $\theta = 45^\circ$

Dynamics

Newton's law of motion

Newton's First Law: a body at rest will remain at rest, a body that is moving will continue with constant velocity, unless acted upon by an external force

Newton's Second Law: the rate of change of momentum of a body is directly proportional to the resultant force acting on it and is in the same direction as the resultant force

Force, F = ma(unit: N or $kgms^{-2}$)

Impulse, Ft = mv - mu(unit: Ns or $kgms^{-1}$)

Newton's Third Law: every action has a reaction which is of the same magnitude but opposite in direction

Linear momentum and its conservation

momentum,p = mv (unit: $kgms^{-1}$)

total linear momentum before collision = total linear momentum after collision

 $m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$

Elastic and Non-elastic collisions

Elastic collision is where kinetic energy is conserved

 $m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$

Non-elastic collision is where kinetic energy is not conserved

 $m_1u_1 + m_2u_2 = (m_1 + m_2)v$

Centre of mass

Coordinates of center of mass

$$\bar{x} = \frac{m_1 x_1 + m_2 x_2 + \dots + m_n x_n}{m_1 + m_2 + \dots + m_n} = \frac{\sum_{i=1}^{i=n} (m_i x_i)}{\sum_{i=1}^{i=n} m_i}$$
$$\bar{y} = \frac{m_1 y_1 + m_2 y_2 + m_n y_n}{m_1 + m_2 + \dots + m_n} = \frac{\sum_{i=1}^{i=n} (m_i y_i)}{\sum_{i=1}^{i=n} m_i}$$

Frictional forces

Limiting static friction, $F_s = \mu_s R$

Kinetic friction, $F_k = \mu_k R$

Work, Energy and Power

Work

Work done, $W = Fs = Fs \cos \theta$ (unit: Nm, J or kgm^2s^{-2})

Potential energy and kinetic energy

Kinetic energy, $K = \frac{1}{2}mv^2$ (unit: J or kgm^2s^{-2})

Potential energy, U = mgh

Total energy, E = K + U

Power

$$P = \frac{W}{t}$$
(unit: Js^{-1} or W or kgm^2s^{-3})

Efficiency

$$Efficiency = \frac{P_{output}}{P_{input}} \times 100\%$$

Circular Motion

Angular displacement and angular velocity

$$T = \frac{2\pi}{\omega}$$
$$\omega = 2\pi f$$
$$v = r\omega$$

Where T =period, ω =angular velocity, 2π =angular displacement of a complete circle, v =velocity, r =radius of the circle

Centripetal acceleration

$$a = v\omega$$
$$a = r\omega^{2}$$
$$a = \frac{v^{2}}{r}$$

Where a =centripetal acceleration, ω =angular velocity, v =velocity, r =radius of the circle

Centripetal force

$$F = mv\omega$$
$$F = mr\omega^{2}$$
$$F = \frac{mv^{2}}{r}$$
$$T = \frac{mv^{2}}{r}$$

Where F =centripetal force, m =mass, ω = angular velocity, v =velocity, r =radius of the circle, T =tension

Gravitational

Newton's law of universal gravitation

 $F = -G \frac{m_1 m_2}{r^2}$ Where $G = 6.67 \times 10^{-11} m^3 k g^{-1} s^{-2}$

Gravitational field

Gravitational field strength, $E = \frac{F}{m}$ Acceleration due to gravity, $g = G \frac{M}{R^2}$ (unit: ms^{-2})

Gravitational potential

Gravitational potential energy, $U = -G \frac{Mm}{r}$ Gravitational potential, $V = -G \frac{M}{r}$ (unit: Jkg^{-1}) $gR^2 = GM$

Satellite motion in circular orbit

Velocity of satellite

$$v = \sqrt{\frac{gR^2}{r}}$$
 or $v = \sqrt{\frac{GM}{r}}$ (unit: ms^{-1})

Total energy of satellite, E = U + K $= -\frac{GmM}{r} + \frac{gmM}{2r}$ $= -\frac{GmM}{2r}$ Escape velocity Escape velocity, $v_e = \sqrt{\frac{2GM}{R}} = \sqrt{2gR}$ $\frac{\text{Statics}}{\text{Equilibrium of particles}}$ $F_1 + F_2 + F_3 = 0$ Closed polygon $F_1 + F_2 + F_3 + F_4 + F_5 = 0$

Equilibrium of a rigid body

Resultant force on a rigid body = F + (-F) = 0

 $Fd = I\alpha$

where I = moment of inertia of the rigid body about the axis of rotation

torque produced by a couple = Fd

where d = perpendicular distance between the two forces of magnitude F

Frictional forces

Limiting static friction, $F_r = \mu_s R$

Where μ_s =coefficient of static friction between the surface areas, R =normal reaction

Deformation of Solids

Stress and strain

Stress = $\frac{F}{A}$ (unit: Nm^{-2}) Strain = $\frac{e}{l_0}$ (no unit)

Where F = force, A = cross-sectional area, e = extension, $I_0 =$ original length

Force-extension graph and stress-strain graph

Young's modulus, $E = \frac{stress}{strain} = \frac{\frac{F}{A}}{\frac{e}{I_0}} = \frac{Fl_0}{Ae}$ (unit: Nm^{-2} , dimensions $ML^{-1}T^{-2}$) Hooke's Law, F = ke

Strain energy

Work done, $\delta W = F \delta x$

Work done/ stress energy $=\frac{1}{2}Fe$

Kinetic theory of gases

Ideal gas equation

Boyle's Law	Charles' Law	Gay-Lussac's Law or Pressure
		Law
$p_1V_1 = p_2V_2$	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$	$\frac{P_1}{T_1} = \frac{P_2}{T_2}$

Ideal Gas Equation

$$pV = nRT$$

pV = nkT

(k =Boltzmann constant, $1.38 \times 10^{-23} J K^{-1}$)

Pressure of a gas

$$p = \frac{1}{3}\rho\langle c^2 \rangle$$
$$p = \frac{1}{3}nm\langle c^2 \rangle$$

Molecular Kinetic Energy

Average translational kinetic energy of the random motion

$$\frac{1}{2}m\langle c^2\rangle = \frac{3}{2}kT$$

Translational kinetic energy per mole on an ideal gas = $\frac{3}{2}RT$

The R.M.S Speed of Gas Molecules

 $c_{r.m.s} = \sqrt{\langle c^2 \rangle} = \sqrt{\frac{3kT}{m}}$ $c_{r.m.s} = \sqrt{\langle c^2 \rangle} = \sqrt{\frac{3RT}{m}}$

Degrees of Freedom and Law of Equipartition of Energy

Average total energy of a molecule with f degrees of freedom = $f\left(\frac{1}{2}kT\right)$

Internal Energy of an Ideal Gas

$$U = N_A \left[f\left(\frac{1}{2}kT\right) \right] = \frac{f}{2}(N_A k)T = \frac{f}{2}RT$$

 $v_{mp} < v_{av} < v_{rms}$ and the ratio $v_{mp} : v_{av} : v_{rms}$ is 1.00: 1.13: 1.23

Thermodynamics of gases

Heat Capacity

Specific heat capacity, $c = \frac{c}{m}$

Molar heat capacity, $c_m = \frac{m_x c}{1000}$

Where m =mass of substance, c = specific heat capacity, C =heat capacity

Work done by a gas

$$W = \int_{v_2}^{v_2} p dV$$

First Law of Thermodynamics

 $\Delta Q = \Delta U + W$

where ΔQ =heat energy supplied, ΔU =increase in internal energy, W = work done by gas

Isothermal and Adiabatic Changes

$$C_{v,m} - C_{V,m} = R$$
$$\gamma = \frac{C_{p,m}}{C_{V,m}}$$
$$C_{p,m} = \frac{f+2}{2}R$$
$$C_{V,m} = \frac{f}{2}R$$

Ratio of principal molar heat capacities

$$\gamma = \frac{C_{p,m}}{C_{V,m}} - \frac{f+2}{2}$$

Heat transfer

Conduction

 $\frac{dQ}{dt} = -kA \frac{d\theta}{dx}$ where k = thermal conductivity (unit: $Wm^{-1}K^{-1}$) A = cross-sectional area (unit: m^2) $\frac{d\theta}{dx}$ = temperature gradient (unit: Km^{-1}) Thermal resistance = $\frac{l}{kA}$ where l = length of rod

$$k =$$
thermal conductivity

A = cross-sectional area

Convection/ radiation/global warming

Stefan -Botzman law:

$$P = e\sigma AT^4, P_{net} = e\sigma A (T^4 - T_0^4)$$

Electrostatics Coulomb's Law $F_e = \frac{Q_1 Q_2}{4\pi\varepsilon_0 r^2}$ Electric field strength $E = \frac{F}{q}$ Gauss's Law $\sum Q = \varepsilon_0 \phi$, $\phi = EA$ for a point charge $Q, E = \frac{Q}{4\pi\varepsilon_0 r^2}$ $V = \frac{Q}{4\pi\varepsilon_0 r}$ $E = -\frac{dV}{dx}$ $V = -\int_{\infty}^{r} E dx$

Capacitors

Energy stored in capacitor

$$E = \frac{1}{2}CV^{2} = \frac{1}{2}QV = \frac{1}{2}\frac{Q^{2}}{C}$$
charging capacitor:

$$I_{0} = \frac{E}{R}$$

$$I = I_{0}e^{\frac{-t}{CR}}, Q = Q_{0}\left(1 - e^{-\frac{t}{CR}}\right), V = E\left(1 - e^{-\frac{t}{CR}}\right)$$
Discharging capacitor: $I = I_{0}e^{-\frac{t}{CR}}, Q = Q_{0}e^{-\frac{t}{CR}}$

$$V = V_{0}e^{-\frac{t}{CR}}; I_{0} = \frac{V_{0}}{R}$$
Time constant, $\tau = CR$

$$\frac{\text{Electric current}}{Current density}, J = \frac{I}{A}$$
Power, $P = VI = I^{2}R = \frac{V^{2}}{R}$
Resistivity, $\rho = \frac{RA}{\ell}$
Conductivity, $\sigma = \frac{1}{\rho} = \frac{ne^{2}\tau}{m}$
Temperature coefficient of resistance,
 $\alpha = (R - R_{0})/R_{0}\theta$

Direct current circuits

Emf E = I(R + r) $\frac{E}{V} = \frac{R + r}{R}$ Kirchhoff's Law $\sum I = 0 \& \sum (IR) = \sum E$

Magnetic fields

 $F_m = qvB\sin\theta = BI\ell\sin\theta$ Magnetic field due to current For a straight wire, $B = \frac{\mu_0 I}{2x\pi}$ For a circular coil, $B = \frac{\mu_0 NI}{2r}$ For a solenoid, $B = \mu_0 nI$ For two parallel conductors, force per unit length $\frac{F}{\ell} = \frac{\mu_0 I_1 I_2}{2\pi d}$ Torque on a coil $\tau = IBAN$ Hall voltage $V_H = \frac{BI}{mto}$

Electromagnetic induction Magnetic flux $\Phi = BA \cos \theta$ Faraday Law, $E = \frac{-d\phi}{dt}$ Induced emf, $E = B\ell v$ straight conductor $E = \pi R^2 f B$ rotating disc $E = NBA\omega \sin \omega t$ rotating coil $E = -L \frac{dI}{dt}$, L =self inductance $N\Phi = LI$ Self inductance for a solenoid, $L = \frac{\mu N^2 A}{q}$ Energy stored in an inductor, $E = \frac{1}{2}LI^2$ Alternating current circuits Capacitor in ac circuit, $V = V_0 \sin 2\pi f t$ $I = I_0 \cos 2\pi f t = I_0 \sin \left(2\pi f t + \frac{\pi}{2}\right)$ Reactance, $X_c = \frac{V_0}{L} = \frac{1}{2\pi f C}$ Inductor in ac circuit. $I = I_0 \sin 2\pi f t$ $V = V_0 \cos 2\pi f t = V_0 \sin \left(2\pi f t + \frac{\pi}{2}\right)$ Reactance, $X_L = \frac{V_0}{I_0} = 2\pi f L$ 6

Oscillations For SHM, $-a = \omega^2 x (\omega^2 = \text{positive constant})$ F = -kx (k = positive constant) Angular frequency, $\omega = \frac{2\pi}{r}$ Period, $T = \frac{1}{f}$ Displacement, $x = x_0 \sin \omega t x$ Velocity, $v = \frac{dx}{dt} = \omega x_0 \cos \omega t$ Acceleration, $a = -\omega^2 x_0 \sin \omega t = -\omega^2 t$ Velocity, $v = +\omega_1 \sqrt{x_0^2 - x^2}$ Total energy, E = U + KKinetic energy, $K = \frac{1}{2}m\omega^2(x_0^2 - x^2)$ Internal energy, $U = \frac{1}{2}m\omega^2 x^2$ Total energy, $E = \frac{1}{2}m\omega^2 x_0^2$ Force, $F = -\frac{dU}{dx} = -m\omega^2 x$ Spring-mass system, Period, $T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{e}{a}}$ Simple pendulum, $T = 2\pi \sqrt{\frac{l}{a}}$

Simple pendulum,
$$f = \frac{1}{2\pi} \sqrt{\frac{g}{l}}$$

(l = length pf pendulum, g = acceleration due togravity)

Spring-mass system, $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ (k = force constant, m = mass of load) Torsional pendulum, $T = 2\pi \sqrt{\frac{l}{c}}$

Wave motion

Period, $T = \frac{1}{\epsilon}$

$$v = f\lambda$$

$$\phi = 2\pi \left(\frac{x}{\lambda}\right)$$

Where *f* = frequency, v =velocity, λ =wavelength, ϕ =phase difference

Equation of progression wave

 $y = a \sin\left(\omega t \pm \frac{2\pi}{\lambda}x\right)$

(+) for negative Ox-direction and (-) for positive Ox-direction

Wave intensity, $I \propto a^2 \propto \frac{1}{r^2}$

Where *I* = intensity, a = amplitude, r = radius of sphere

Principle of superposition

Displacement of y at the point due to two waves, y = $y_1 + y_2$

Standing wave equation

$$y = \left(2a\cos\frac{2\pi}{\lambda}x\right)\sin\omega t$$

Sound waves

Fundamental frequency Along a stretched spring $f_0 = \frac{v}{2l} = \frac{1}{2l} = \frac{1}{2l} \sqrt{\frac{T}{u}}$ (unit: *Hz*) Vibrating air column, $f_0 = \frac{v}{\lambda_0} = \frac{v}{4l}$ Tube open at both ends, $f_0 = \frac{v}{\lambda_0} = \frac{v}{2l}$ Intensity level, $\beta = 10 \log_{10} \frac{l}{l_0} dB$ Where I = intensity of sound, $I_0 = 1 \times 10^{-12} W m^{-2}$ Beat frequency, $f = (f_1 - f_2)$ Doppler effect: Apparent frequency, $f' = \left(\frac{v \pm u_0}{v \mp u_c}\right) f$

Geometrical optics

 $f = \frac{r}{2}$

Refraction at curved surface,

$$\frac{n_1}{u} + \frac{n_2}{v} = \frac{n_2 - n_1}{r}$$

Lens maker's formula,

$$\frac{1}{f} = \left(\frac{n_2}{n_1} - 1\right) \left(\frac{1}{r_1} + \frac{1}{r_2}\right)$$

Lens formula, $\frac{1}{f} = \frac{1}{n} + \frac{1}{n}$

Wave optics

Interference, $\lambda = \frac{ax}{D}$

Single slit diffraction $\sin \theta = \frac{\lambda}{a}$ for 1st minimum Diffraction grating $dsin \theta_n = n\lambda$; highest order $n_{max} \leq \frac{d}{\lambda}$

Intensity of transmitted polarized wave $I = I_0 cos^2 \theta$

Speed of light
$$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}$$

Quantum physics

Energy of photon $E = hf = \frac{hc}{\lambda}$ Einstein's photoelectric equation $hf = W + \frac{1}{2}mv_{max}^2$ where Work function $W = hf_0$; f_0 =threshold frequency $\frac{1}{2}mv_{max}^2 = eV_s$; V_s =stopping potential De Broglie wavelength, $\lambda = \frac{h}{p} = \frac{h}{mv}$

Nuclear physics

Work function, $hf = E_f - E_i$ Shortest wavelength, $\lambda_{min} = \frac{hc}{eV}$ Bragg's law: $2d\sin \theta = n\lambda$ $E = mc^2, m = mass$ defect Radioactivity, $\frac{dN}{dt} = -\lambda N$; half life. $T_{\frac{1}{2}} = \frac{ln 2}{\lambda}$ $N = N_0 e^{-\lambda t} = (\frac{1}{2})^n N_0$ where n = no of half life Reaction energy, $Q = [(M_x + m_x) - (M_y + m_y)]c^2$