STPM/SUEC PHYSICS FORMULAE SHEET

Physical quantities and units

Dimensions of physical quantities

Quantity	SI unit	Symbol	Dimension
time	second	s	T
mass	kilogram	kg	M
length	metre	m	L
current	ampere	A	l
temperature	kelvin	K	θ
amount of substance	mole	mol	N
light intensity	candela	cd	

Prefix	Power	Abbreviation
peta	10^{15}	P
tera	10^{12}	T
giga	10^{9}	G
mega	10^{6}	M
kilo	10^{3}	K
hector	10^{2}	H
deka	10^{1}	da
deci	10^{-1}	d
centi	10^{-2}	c
milli	10^{-3}	m
micro	10^{-6}	μ
nano	10^{-9}	n
pico	10^{-12}	p
femto	10^{-15}	f

Kinematics and dynamics

Linear motion and projectile

$v=\frac{s}{t}\left(m s^{-1}\right)$
$v^{2}=u^{2}+2 a s$
$v=u+a t$
$s=u t+\frac{1}{2} a t^{2}$
$a=\frac{v-u}{t}\left(m s^{-2}\right)$
$a=\frac{1}{2}(u+v) t$
Greatest height, $H=\frac{u^{2} \sin ^{2} \theta}{2 g}$
Range , $R=\frac{u^{2} \sin 2 \theta}{g}$
Time of flight, $T=\frac{2 u \sin \theta}{2 g}$
Maximum range, $R=\frac{u^{2}}{g}$, where $\theta=45^{\circ}$

Dynamics

Newton's law of motion

Newton's First Law: a body at rest will remain at rest, a body that is moving will continue with constant velocity, unless acted upon by an external force

Newton's Second Law: the rate of change of momentum of a body is directly proportional to the resultant force acting on it and is in the same direction as the resultant force

Force, $F=m a\left(\right.$ unit: N or kgms^{-2})
Impulse, $F t=m v-m u\left(\right.$ unit: $N s$ or $\left.k g m s^{-1}\right)$
Newton's Third Law: every action has a reaction which is of the same magnitude but opposite in direction

Linear momentum and its conservation

momentum, $p=m v$ (unit: kgms^{-1})
total linear momentum before collision $=$ total linear momentum after collision
$m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2}$

Elastic and Non-elastic collisions

Elastic collision is where kinetic energy is conserved
$m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2}$
Non-elastic collision is where kinetic energy is not conserved
$m_{1} u_{1}+m_{2} u_{2}=\left(m_{1}+m_{2}\right) v$

Centre of mass

Coordinates of center of mass
$\bar{x}=\frac{m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}}{m_{1}+m_{2}+\cdots+m_{n}}=\frac{\sum_{i=1}^{i=n}\left(m_{i} x_{i}\right)}{\sum_{i=1}^{i=n} m_{i}}$
$\bar{y}=\frac{m_{1} y_{1}+m_{2} y_{2}+m_{n} y_{n}}{m_{1}+m_{2}+\cdots+m_{n}}=\frac{\sum_{i=1}^{i=n}\left(m_{i} y_{i}\right)}{\sum_{i=1}^{i=n} m_{i}}$

Frictional forces

Limiting static friction, $F_{s}=\mu_{s} R$
Kinetic friction, $F_{k}=\mu_{k} R$

Work, Energy and Power

Work
Work done, $W=F s=F s \cos \theta$ (unit: $N m, J$ or $k g m^{2} s^{-2}$)

Potential energy and kinetic energy

Kinetic energy, $K=\frac{1}{2} m v^{2}$ (unit: J or $\mathrm{kgm}^{2} \mathrm{~s}^{-2}$)
Potential energy, $U=m g h$
Total energy, $E=K+U$

Power

$P=\frac{W}{t}$ (unit: $J s^{-1}$ or W or $k g m^{2} s^{-3}$)

Efficiency

Efficiency $=\frac{P_{\text {output }}}{P_{\text {input }}} \times 100 \%$

Circular Motion

Angular displacement and angular velocity

$T=\frac{2 \pi}{\omega}$
$\omega=2 \pi f$
$v=r \omega$
Where T =period, ω =angular velocity, $2 \pi=$ angular displacement of a complete circle, $v=$ velocity,
$r=$ radius of the circle

Centripetal acceleration

$a=v \omega$
$a=r \omega^{2}$
$a=\frac{v^{2}}{r}$
Where $a=$ centripetal acceleration, ω =angular velocity, $v=$ velocity, $r=$ radius of the circle

Centripetal force

$$
\begin{aligned}
& F=m v \omega \\
& F=m r \omega^{2} \\
& F=\frac{m v^{2}}{r} \\
& T=\frac{m v^{2}}{r}
\end{aligned}
$$

Where $F=$ centripetal force, $m=$ mass, $\omega=$ angular velocity, $v=$ velocity, $r=$ radius of the circle,
$T=$ tension

Gravitational

Newton's law of universal gravitation

$F=-G \frac{m_{1} m_{2}}{r^{2}}$
Where $G=6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$

Gravitational field

Gravitational field strength, $E=\frac{F}{m}$
Acceleration due to gravity, $g=G \frac{M}{R^{2}}$ (unit: $m s^{-2}$)

Gravitational potential

Gravitational potential energy, $U=-G \frac{M m}{r}$
Gravitational potential, $V=-G \frac{M}{r}$ (unit: Jkg^{-1})
$g R^{2}=G M$

Satellite motion in circular orbit

Velocity of satellite
$v=\sqrt{\frac{g R^{2}}{r}}$ or $v=\sqrt{\frac{G M}{r}}\left(\right.$ unit: $m s^{-1}$)

Total energy of satellite, $E=U+K$
$=-\frac{G m M}{r}+\frac{g m M}{2 r}$
$=-\frac{G m M}{2 r}$

Escape velocity

Escape velocity, $v_{e}=\sqrt{\frac{2 G M}{R}}=\sqrt{2 g R}$

Statics

Equilibrium of particles

$F_{1}+F_{2}+F_{3}=0$

Closed polygon

$F_{1}+F_{2}+F_{3}+F_{4}+F_{5}=0$

Equilibrium of a rigid body

Resultant force on a rigid body $=F+(-F)=0$
$F d=I \alpha$
where $I=$ moment of inertia of the rigid body about the axis of rotation
torque produced by a couple $=F d$
where $d=$ perpendicular distance between the two forces of magnitude F

Frictional forces

Limiting static friction, $F_{r}=\mu_{s} R$
Where $\mu_{s}=$ coefficient of static friction between the surface areas, $R=$ normal reaction

Deformation of Solids

Stress and strain
Stress $=\frac{F}{A}$ (unit: Nm^{-2})
Strain $=\frac{e}{I_{0}}$ (no unit)
Where $F=$ force, $A=$ cross-sectional area,
$e=$ extension, $I_{0}=$ original length

Force-extension graph and stress-strain graph
Young's modulus, $E=\frac{\text { stress }}{\text { strain }}=\frac{\frac{F}{e}}{\frac{A}{I_{0}}}=\frac{F l_{0}}{A e}$ (unit: Nm^{-2}, dimensions $M L^{-1} T^{-2}$)

Hooke's Law, $F=k e$

Strain energy

Work done, $\delta W=F \delta x$
Work done/ stress energy $=\frac{1}{2} F e$

Kinetic theory of gases

Ideal gas equation

Boyle's Law	Charles' Law	Gay-Lussac's Law or Pressure Law
$p_{1} V_{1}=p_{2} V_{2}$	$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$	$\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$

Ideal Gas Equation
$p V=n R T$
$p V=n k T$
(k = Boltzmann constant, $1.38 \times 10^{-23} \mathrm{JK}^{-1}$)

Pressure of a gas

$p=\frac{1}{3} \rho\left\langle c^{2}\right\rangle$
$p=\frac{1}{3} n m\left\langle c^{2}\right\rangle$

Molecular Kinetic Energy

Average translational kinetic energy of the random motion
$\frac{1}{2} m\left\langle c^{2}\right\rangle=\frac{3}{2} k T$

Translational kinetic energy per mole on an ideal gas $=$ $\frac{3}{2} R T$

The R.M.S Speed of Gas Molecules

$c_{r . m . s}=\sqrt{\left\langle c^{2}\right\rangle}=\sqrt{\frac{3 k T}{m}}$
$c_{\text {r.m.s }}=\sqrt{\left\langle c^{2}\right\rangle}=\sqrt{\frac{3 R T}{m}}$

Degrees of Freedom and Law of Equipartition of

 EnergyAverage total energy of a molecule with f degrees of freedom $=f\left(\frac{1}{2} k T\right)$

Internal Energy of an Ideal Gas

$U=N_{A}\left[f\left(\frac{1}{2} k T\right)\right]=\frac{f}{2}\left(N_{A} k\right) T=\frac{f}{2} R T$
$v_{m p}<v_{a v}<v_{r m s}$ and the ratio $v_{m p}: v_{a v}: v_{r m s}$ is 1.00: 1.13: 1.23

Thermodynamics of gases

Heat Capacity

Specific heat capacity, $c=\frac{C}{m}$
Molar heat capacity, $c_{m}=\frac{m_{x} c}{1000}$
Where $m=$ mass of substance, $c=$ specific heat
capacity, $C=$ heat capacity

Work done by a gas

$W=\int_{v_{2}}^{v_{2}} p d V$

First Law of Thermodynamics

$\Delta Q=\Delta U+W$
where $\Delta Q=$ heat energy supplied, $\Delta U=$ increase in internal energy, $W=$ work done by gas

Isothermal and Adiabatic Changes

$C_{v, m}-C_{V, m}=R$
$\gamma=\frac{C_{p, m}}{C_{V, m}}$
$C_{p, m}=\frac{f+2}{2} R$
$C_{V, m}=\frac{f}{2} R$

Ratio of principal molar heat capacities
$\gamma=\frac{C_{p, m}}{C_{V, m}}-\frac{f+2}{2}$

Heat transfer

Conduction

$\frac{d Q}{d t}=-k A \frac{d \theta}{d x}$ where
$k=$ thermal conductivity (unit: $\mathrm{Wm}^{-1} \mathrm{~K}^{-1}$)
$A=$ cross-sectional area (unit: m^{2})
$\frac{d \theta}{d x}=$ temperature gradient (unit: Km^{-1})
Thermal resistance $=\frac{l}{k A}$ where
$l=$ length of rod
$k=$ thermal conductivity
$A=$ cross-sectional area

Convection/ radiation/global warming

Stefan -Botzman law:
$P=e \sigma A T^{4}, P_{n e t}=e \sigma A\left(T^{4}-T_{0}{ }^{4}\right)$

Electrostatics

Coulomb's Law $F_{e}=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} r^{2}}$
Electric field strength $E=\frac{F}{q}$
Gauss's Law $\sum Q=\varepsilon_{0} \phi, \quad \phi=E A$
for a point charge $Q, E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}$

$$
V=\frac{Q}{4 \pi \varepsilon_{0} r}
$$

$$
E=-\frac{d V}{d x}
$$

$$
V=-\int_{\infty}^{r} E d x
$$

Capacitors

Energy stored in capacitor
$E=\frac{1}{2} C V^{2}=\frac{1}{2} Q V=\frac{1}{2} \frac{Q^{2}}{C}$
charging capacitor:
$I_{0}=\frac{E}{R}$
$I=I_{0} e^{\frac{-t}{C R}}, Q=Q_{0}\left(1-e^{-\frac{t}{C R}}\right), V=E\left(1-e^{-\frac{t}{C R}}\right)$
Discharging capacitor: $I=I_{0} e^{-\frac{t}{C R}}, Q=Q_{0} e^{-\frac{t}{C R}}$
$V=V_{0} e^{-\frac{t}{C R}} ; I_{0}=\frac{V_{0}}{R}$
Time constant, $\tau=C R$

Electric current

Current $I=\frac{d Q}{d t}=n A v e$
Current density, $J=\frac{I}{A}$
Power, $P=V I=I^{2} R=\frac{V^{2}}{R}$
Resistivity, $\rho=\frac{R A}{\ell}$
Conductivity, $\sigma=\frac{1}{\rho}=\frac{n e^{2} \tau}{m}$
Temperature coefficient of resistance,

$$
\alpha=\left(R-R_{0}\right) / R_{0} \theta
$$

Direct current circuits

Emf $E=I(R+r)$
$\frac{E}{V}=\frac{R+r}{R}$
Kirchhoff's Law $\sum I=0 \& \sum(I R)=\sum E$

Magnetic fields

$F_{m}=q v B \sin \theta=B I \ell \sin \theta$
Magnetic field due to current
For a straight wire, $B=\frac{\mu_{0} I}{2 x \pi}$
For a circular coil, $B=\frac{\mu_{0} N I}{2 r}$
For a solenoid, $B=\mu_{0} n I$
For two parallel conductors, force per unit length
$\frac{F}{\ell}=\frac{\mu_{0} I_{1} I_{2}}{2 \pi d}$
Torque on a coil $\tau=I B A N$
Hall voltage $V_{H}=\frac{B I}{n t e}$

Electromagnetic induction

Magnetic flux $\Phi=B A \cos \theta$
Faraday Law, $E=\frac{-d \phi}{d t}$
Induced emf, $E=B \ell v$ straight conductor
$E=\pi R^{2} f B$ rotating disc
$E=N B A \omega \sin \omega t$ rotating coil
$E=-L \frac{d I}{d t}, L=$ self inductance
$N \Phi=L I$
Self inductance for a solenoid, $L=\frac{\mu N^{2} A}{\ell}$
Energy stored in an inductor, $E=\frac{1}{2} L I^{2}$

Alternating current circuits

Capacitor in ac circuit,
$V=V_{0} \sin 2 \pi f t$
$I=I_{0} \cos 2 \pi f t=I_{0} \sin \left(2 \pi f t+\frac{\pi}{2}\right)$
Reactance, $X_{C}=\frac{V_{0}}{I_{0}}=\frac{1}{2 \pi f C}$
Inductor in ac circuit,
$I=I_{0} \sin 2 \pi f t$
$V=V_{0} \cos 2 \pi f t=V_{0} \sin \left(2 \pi f t+\frac{\pi}{2}\right)$
Reactance, $X_{L}=\frac{V_{0}}{I_{0}}=2 \pi f L$

Oscillations

For SHM, $-a=\omega^{2} x\left(\omega^{2}=\right.$ positive constant)
$F=-k x \quad(k=$ positive constant $)$
Angular frequency, $\omega=\frac{2 \pi}{T}$
Period, $T=\frac{1}{f}$
Displacement, $x=x_{0} \sin \omega t x$
Velocity,$v=\frac{d x}{d t}=\omega x_{0} \cos \omega t$
Acceleration, $a=-\omega^{2} x_{0} \sin \omega t=-\omega^{2} t$
Velocity, $v= \pm \omega \sqrt{x_{0}{ }^{2}-x^{2}}$
Total energy, $E=U+K$
Kinetic energy, $K=\frac{1}{2} m \omega^{2}\left(x_{0}{ }^{2}-x^{2}\right)$
Internal energy, $U=\frac{1}{2} m \omega^{2} x^{2}$
Total energy, $E=\frac{1}{2} m \omega^{2} x_{0}{ }^{2}$
Force, $F=-\frac{d U}{d x}=-m \omega^{2} x$
Spring-mass system,
Period, $T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{e}{g}}$
Simple pendulum, $T=2 \pi \sqrt{\frac{l}{g}}$

Simple pendulum, $f=\frac{1}{2 \pi} \sqrt{\frac{g}{l}}$
($l=$ length pf pendulum, $g=$ acceleration due to gravity)

Spring-mass system, $f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}$
($k=$ force constant, $m=$ mass of load)
Torsional pendulum, $T=2 \pi \sqrt{\frac{I}{C}}$

Wave motion

Period, $\boldsymbol{T}=\frac{\mathbf{1}}{\boldsymbol{f}}$
$v=f \lambda$
$\phi=2 \pi\left(\frac{x}{\lambda}\right)$
Where $f=$ frequency, $v=$ velocity, $\lambda=$ wavelength, $\phi=$ phase difference

Equation of progression wave
$y=a \sin \left(\omega t \pm \frac{2 \pi}{\lambda} x\right)$
(+) for negative Ox-direction and
(-) for positive Ox-direction
Wave intensity, $I \propto a^{2} \propto \frac{1}{r^{2}}$
Where $I=$ intensity, $a=$ amplitude, $r=$ radius of sphere

Principle of superposition

Displacement of y at the point due to two waves, $y=$ $y_{1}+y_{2}$
Standing wave equation

$$
y=\left(2 a \cos \frac{2 \pi}{\lambda} x\right) \sin \omega t
$$

Sound waves

Fundamental frequency
Along a stretched spring
$f_{0}=\frac{v}{2 l}=\frac{1}{2 l}=\frac{1}{2 l} \sqrt{\frac{T}{u}}$ (unit: Hz)
Vibrating air column, $f_{0}=\frac{v}{\lambda_{0}}=\frac{v}{4 l}$
Tube open at both ends, $f_{0}=\frac{v}{\lambda_{0}}=\frac{v}{2 l}$
Intensity level, $\beta=10 \log _{10} \frac{I}{I_{0}} d B$
Where $I=$ intensity of sound, $I_{0}=1 \times 10^{-12} \mathrm{Wm}^{-2}$
Beat frequency, $f=\left(f_{1}-f_{2}\right)$
Doppler effect:
Apparent frequency, $f^{\prime}=\left(\frac{v \pm u_{0}}{v \mp u_{s}}\right) f$

Geometrical optics

$f=\frac{r}{2}$
Refraction at curved surface,
$\frac{n_{1}}{u}+\frac{n_{2}}{v}=\frac{n_{2}-n_{1}}{r}$
Lens maker's formula,
$\frac{1}{f}=\left(\frac{n_{2}}{n_{1}}-1\right)\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)$
Lens formula, $\frac{1}{f}=\frac{1}{u}+\frac{1}{v}$

Wave optics

Interference, $\lambda=\frac{a x}{D}$
Single slit diffraction $\sin \theta=\frac{\lambda}{a}$ for $1^{\text {st }}$ minimum
Diffraction grating $d \sin \theta_{n}=n \lambda$; highest order $n_{\max } \leq \frac{d}{\lambda}$

Intensity of transmitted polarized wave $I=I_{0} \cos ^{2} \theta$
Speed of light $c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}$

Quantum physics

Energy of photon $E=h f=\frac{h c}{\lambda}$
Einstein's photoelectric equation
$h f=W+\frac{1}{2} m v_{\max }{ }^{2}$ where
Work function $W=h f_{0} ; f_{0}=$ threshold frequency
$\frac{1}{2} m v_{\text {max }}{ }^{2}=e V_{s} ; V_{s}=$ stopping potential
De Broglie wavelength, $\lambda=\frac{h}{p}=\frac{h}{m v}$

Nuclear physics

Work function, $h f=E_{f}-E_{i}$
Shortest wavelength, $\lambda_{\text {min }}=\frac{h c}{e V}$
Bragg's law: $2 d \sin \theta=n \lambda$
$E=m c^{2}, m=$ mass defect
Radioactivity, $\frac{d N}{d t}=-\lambda N$; half life. $T_{\frac{1}{2}}=\frac{\ln 2}{\lambda}$
$N=N_{0} e^{-\lambda t}=\left(\frac{1}{2}\right)^{n} N_{0}$ where $n=$ no of half life
Reaction energy, $Q=\left[\left(M_{x}+m_{x}\right)-\left(M_{y}+m_{y}\right)\right] c^{2}$

