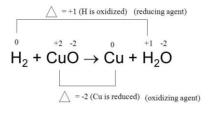
氧化数与氧化还原的关系

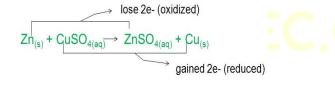
氧化数


原子得到一个电子, 其电荷数为-1; 失去一个电子, 其电荷数为+1, 这种"想象"出来的电荷数称氧化数, 也称氧化态

氧化还原反应

氧化反应	在反应中, 元素的氧化数升高 原子失去电子,相当于带了更多正电荷,元素的氧化数升高
还原反应	氧化数降低反应
	原子得到电子,带着更多负电荷,氧化数降低

氧化还原反应同时发生,所以每个反应可以看成半反应(half-equation)



氧化反应	氢的氧化数从 0 升为+2 H ₂ → H +2e ⁻ (还原剂)
	H₂ → H +2e⁻ (还原剂)
还原反应	铜的氧化数从+2 降为 0 Cu²++ 2e⁻ → Cu (氧化
	Cu²++ 2e⁻ → Cu (氧化
	剂)

例子

氧化反应	锌的氧化数从 0 升为+2
	Zn→ Zn ²⁺ +2e ⁻ (还原
	剂)
还原反应	铜的氧化数从+2 降为 0 Cu²++ 2e⁻ → Cu (氧化
	Cu ²⁺ + 2e ⁻ → Cu (氧化
	剂)

氧化剂与还原剂

氧化剂(oxidizing agent)

在氧化还原反应中,凡是得到电子、自身被还原的物质就 是氧化剂

某元素的氧化数降低

常见的氧化剂 (氧化数容易降低)

- 活泼的非金属单质,如卤素单质(氟、氯、溴、碘)、氧
- 含最高氧化数的金属阳离子化合物,如氯化铁(Ⅲ)
- 含某些元素较高氧化数的化合物,人浓硫酸、硝酸、高锰酸钾等
- 其它如过氧化物

还原剂(reducing agent)	在氧化还原反应中失去电子,自身被氧化的物质			
	某元素的氧化数升高			
	常见的还原剂(氧化数容易升高)			
	• 活泼的金属单质,如钾、钠、钙、锌、铁			
	• 含较低的氧化数的金属阳离子的化合物如氯化铁			
	(II)			
	• 某些非金属单质,如氢气、碳单质			
	• 含某些元素较低的氧化数的化合物,如一氧化碳、			
	二氧化硫、硫化氢、碘化氢、硫酸钠、硫代硫酸钠			
	等			

氧化剂与还原剂强弱的判断

利用氧化数的比较物质氧 化性、还原性的强弱	所含元素为最高的氧化数的物质只有氧化性,所含元素为最低氧化数的物质只有还原性,所含元素为中间氧化数的物质既有氧化性又有还原性例子。 氧化性 Fe < Fe ²⁺ < Fe ³⁺ 还原性 Fe > Fe ²⁺ > Fe ³⁺		
利用元素活动性的不同比较物质氧化性、还原性的强弱	金属 金属性越强,其单质的还原性越强,其金属阳离子的氧化性越弱还原性: K > Ca > Na > Mg > Al >> Hg > Ag > Pt > Au 例子氧化性: K ⁺ < Ca ²⁺ < Na ⁺ < Mg ²⁺ < Al ³⁺ < < Hg ²⁺ < Ag ⁺ < Pt ²⁺ < Au ⁺		
利用氧化还原反应比较物 质氧化性、还原性的强弱 用同一起点反应进行的难 易程度来比较物质氧化 性、还原性的强弱	氧化性: 氧化剂 > 氧化产物 还原性: 还原剂 > 还原产物 Eg. 2FeCl ₃ + Cu → CuCl ₂ + 2FeCl ₂ 氧化剂 还原剂 氧化产物 还原产物 氧化性: Fe ³⁺ > Cu ²⁺ 还原性: Cu > Fe ²⁺ i. 与同一还原剂的反应越容易进行,其氧化剂的氧化性越强(越容易夺得电子)		

ii. 与同一氧化剂的反应越容易进行,其还原剂的 还原性越强(越容易失去电子)

例子: Cu + 4HNO₃(浓)→ Cu (NO₃)₂ + 2NO₂+ 2H₂O 在常温下发生; Cu + 2H₂SO₄(浓)→CuSO₄ + SO₂ + 2H₂O 需在加热条件下才发生, 因此氧化性: 浓硝酸>浓硫酸

氧化还原反应方程式的配平

	エンクロント	,				
氧化数法	i.	标出氧化还原	反应的元素氧	氰化数		
(oxidation		+3 -2 +2	2 0			
number		$FeCl_3 + H_2S \rightarrow F$	eCl ₂ + HCl + S	5		
method)	ii.	i. 求出元素氧化数的变化数值				
		Fe 的氧化数降低 1				
		$FeCl_3 + H_2S \rightarrow F$	eCl ₂ + HCl + S	5		
		c 44/=	: //.Ψ/-1/ -			
		2 的	化数升高 2			
	iii.	使氧化数升高	和降低的总数	数相等		
		1 x 2				
]			
		$FeCl_3 + H_2S \rightarrow F$	eCl ₂ + HCl + S	5		
				J		
		2 x 1				
	is ,	西 宁夕	M 玄 粉			
	iv.	确定各化学式 2FeCl₃ + H ₂ S →		Y . C		
		2FEC13 + H23 7	2FECI2 + 2FIC	.1 + 3		
	i.	写出两个半点		7		
		$KMnO_4 + K_2SO_4$			₂ SO ₄ + H ₂ O	
	$MnO_4^- + SO_3^{2-} \rightarrow Mn^{2+} + SO_4^{2-}$					
	MnC	MnO₄ ⁻ → Mn ²⁺			1nO ₄ ⁻+8H⁺+5e⁻= Mn²++4H ₂ O	
	SO ₃ ²	$3^{2-} \rightarrow SO_4^{2-}$		$SO_3^{2^-} + H_2O = SO_4^{2^-} + 2H^+ + 2e^-$		
	配平半反应中氧原子数的方法:					
		氧化剂: 3		还原反应	还原剂:在氧化反应	
			中氧原子数	(减少1个	中氧原子数增加 1	
					个	
	酸性	:介质	+2H ⁺ → H ₂ O		+H ₂ O → 2H ⁺	
	中性	:介质	+H ₂ O → 2O	H ⁻	+H ₂ O → 2H ⁺	

碱性介	质	+H ₂ O → 2OH ⁻	+ 20H ⁻ → H ₂ O	
ii.	根据氧化剂原	所获得的电子总数和还原	原剂失去的电子总数必	
须相等的原则,配平离子反应的方程式				
	MnO ₄ -+8H++5	$e^{-}=Mn^{2+}+4H_2O$ x 2		
$+ SO_3^{2-} + H_2O = SO_4^{2-} + 2H^+ + 2e^- \times 5$				
	2MnO ₄ + 5SC	$0_3^{2^-} + 6H^+ = 2Mn^{2^+} + 5SO_4^{2^-} +$	· 3H ₂ O	
	∴ 2KMnO ₄ + 5	$5K_2SO_3 + 3H2SO_4 \rightarrow 2MnS$	$5O_4 + 6K_2SO_4 + 3H_2O$	

