Matrices

1. Introduction of Matrix

- The table shows the expenses of Adam and Aarif for a month.

Expenses	Adam	Aarif
Bus fare	10	13
Stationary	5	4
Meals	9	12

- The information can be represent as a rectangular array of numbers as below:
$\left(\begin{array}{cc}10 & 13 \\ 5 & 4 \\ 9 & 12\end{array}\right)$
- This rectangular array of numbers in rows and columns is called amatrix(plural: matrices).
- This matrix has 3 rows and 2 columns, we say that it has order, or dimension, 3×2 (read as 3 by 2), where the number of rows is specified first.
- The numbers in a matrix is called its elements or entries.
- A matrix that has only one column is called a column matrix. Example: $\binom{-1}{3},\left(\begin{array}{l}1 \\ 4 \\ 7\end{array}\right)$
- A matrix that has only one row is called a row matrix. Example: $\left(\begin{array}{lll}2 & 5\end{array}\right),\left(\begin{array}{lll}2 & -3 & 5\end{array}\right)$
- If the number rows and columns are equal, the matrix is called square matrix. Example: $\left(\begin{array}{cc}-2 & 3 \\ 1 & 10\end{array}\right)$, $\left(\begin{array}{ccc}1 & -2 & 4 \\ 2 & 5 & 6 \\ 3 & 7 & -5\end{array}\right)$
- Two matrices are equal (equal matrix) if they have the same order and of their corresponding elements are equal. Given $A=\left(\begin{array}{cc}1 & 4 \\ -2 & 0\end{array}\right), B=\left(\begin{array}{cc}4 & 0 \\ 1 & -2\end{array}\right), C=\left(\begin{array}{cc}1 & 4 \\ -2 & 0\end{array}\right)$, so $A=C$, but $A \neq B$
- A matrix with all the elements are zeros is call zero or null matrix, and usually denoted by \mathbf{O}. $\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
- Transpose matrix, denoted by A^{\prime}, A^{t} or A^{T} is matrix when the row and column's elements are exchange. For example,

$$
A=\left(\begin{array}{ccc}
1 & 3 & 2 \\
5 & -2 & 4
\end{array}\right) A^{\prime}=\left(\begin{array}{cc}
1 & 5 \\
3 & -2 \\
2 & 4
\end{array}\right)
$$

Example 1: If $\left(\begin{array}{cc}a+1 & a+c \\ c & d+2\end{array}\right)=\left(\begin{array}{cc}-2 & -b \\ b-d & 1\end{array}\right)$, find the value of a, b, c and d.

2. Addition and Subtraction of Matrix

- For two matrices A and B of the same order,
\Rightarrow the matrix $A+B$ is obtained by adding the corresponding elements of A and B.
\Rightarrow the matrix $A-B$ is obtained by subtracting the corresponding elements of B from A.
Example 2: Calculate the following
(a) $\left(\begin{array}{ccc}1 & -2 & 3 \\ 0 & 4 & 5\end{array}\right)+\left(\begin{array}{ccc}2 & 1 & -6 \\ 1 & 3 & 7\end{array}\right)$
(b) $\left(\begin{array}{cc}4 & 5 \\ 3 & 4 \\ 1 & -5\end{array}\right)-\left(\begin{array}{cc}2 & 4 \\ 3 & 4 \\ 2 & -3\end{array}\right)$

3. Multiplication of Matrices

- Scalar multiplication: a matrix and areal number k (scalar), the matrix $k A$ is obtained by multiplying each elements in A by k.

Example 3: Calculate the following

(a) $2\left(\begin{array}{cc}1 & -1 \\ 4 & 3\end{array}\right)-3\left(\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right)$
(b) $\left(\begin{array}{ccc}-3 & 2 & 0 \\ 4 & 5 & 1\end{array}\right)+4\left(\begin{array}{ccc}2 & 0 & 1 \\ 3 & -1 & 4\end{array}\right)$

Example 4: Given that $A=\left(\begin{array}{ccc}-2 & 1 & 0 \\ 0 & -1 & 3\end{array}\right)$ and $B=\left(\begin{array}{ccc}-1 & 2 & 3 \\ 5 & 1 & -1\end{array}\right)$. If $3 X-2 B=X+4 A$, find matrix X.
Example 5. Find the matrix of $2 A-3 B$ if $A=\left(\begin{array}{cc}2 & 0 \\ -3 & 5\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & -1 \\ 2 & -4\end{array}\right)$.

Exercise 1

1. $\binom{3}{4}+\binom{5}{-3}$
$2 \cdot\left(\begin{array}{cc}-2 & 3 \\ 1 & 10\end{array}\right)+\left(\begin{array}{cc}5 & -3 \\ 0 & -7\end{array}\right)$
2. $\left(\begin{array}{cc}-1 & 13 \\ 10 & 0\end{array}\right)-\left(\begin{array}{cc}-5 & -10 \\ 5 & -7\end{array}\right)$
3. $\left(\begin{array}{c}2 \\ 5 \\ -1\end{array}\right)-\left(\begin{array}{l}3 \\ 0 \\ 5\end{array}\right)$
4. $\left(\begin{array}{cc}2 & -2 \\ 3 & 5 \\ -1 & 0\end{array}\right)+\left(\begin{array}{cc}3 & 7 \\ 0 & -3 \\ 5 & 2\end{array}\right)$

$$
\text { 6. }\left(\begin{array}{lll}
4 & -3 & 2
\end{array}\right)+\left(\begin{array}{lll}
3 & 5 & 5
\end{array}\right)
$$

7. Find $\left(\begin{array}{cc}-2 & -1 \\ 1 & 5\end{array}\right)+\left(\begin{array}{cc}-4 & -3 \\ 2 & 1\end{array}\right)$, then find $\left(\begin{array}{cc}-4 & -3 \\ 2 & 1\end{array}\right)+\left(\begin{array}{cc}-2 & -1 \\ 1 & 5\end{array}\right)$.
8. Given $A=\left(\begin{array}{cc}2 & -1 \\ 0 & 5\end{array}\right)$, find $3 A$.
9. Given $A=\left(\begin{array}{cc}3 & -1 \\ 2 & 0\end{array}\right)$, find $2 A$ and $5 A$.
10. Given $A=\left(\begin{array}{cc}2 & -1 \\ 3 & 5\end{array}\right), B=\left(\begin{array}{cc}12 & -6 \\ 18 & 30\end{array}\right)$, express B in terms of A.
11. Given $A=\binom{1}{0}, B=\binom{5}{3}$, find $A+B$ and $2 A-3 B$
12. Given $A=\left(\begin{array}{cc}-2 & 1 \\ 3 & -5\end{array}\right), B=\left(\begin{array}{cc}2 & 8 \\ -4 & 3\end{array}\right)$, find $A+B$ and $B+A$
13. Given $A=\left(\begin{array}{ccc}-2 & 1 & 0 \\ 3 & -5 & 2\end{array}\right), B=\left(\begin{array}{ccc}2 & -1 & 0 \\ -3 & 5 & -2\end{array}\right)$, find $A+B$ and $2 A-B$
14. Given $A=\left(\begin{array}{ccc}1 & -2 & 4 \\ 2 & 5 & 6 \\ 3 & 7 & -5\end{array}\right), B=\left(\begin{array}{ccc}-2 & 5 & 4 \\ 8 & -6 & 6 \\ 3 & 7 & -5\end{array}\right)$, find $A+B, 2 A-B$ and $A-2 B$

- Multiplication of two matrices in general, $A \bullet B=P$; order: $m \times e \bullet e \times t=m \times t$.

Example 6: Find the matrix $A B$ and $B A$ for the following matrices:
(a) $A=\left(\begin{array}{cc}1 & 3 \\ -2 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}2 & -1 \\ 1 & 0\end{array}\right)$
(b) $A=\left(\begin{array}{cc}2 & 0 \\ -1 & 3 \\ 1 & -2\end{array}\right)$ and $B=\left(\begin{array}{ccc}-1 & 1 & 3 \\ 4 & -2 & 1\end{array}\right)$

Exercise 2

Y. $\left(\begin{array}{ll}1 & 2\end{array}\right)\binom{5}{6}$
(17)
2. $\binom{3}{5}\left(\begin{array}{ll}-1 & 3\end{array}\right) \quad\left(\begin{array}{cc}-3 & 9 \\ -5 & 15\end{array}\right)$

子. $\left(\begin{array}{ccc}-4 & 0 & -2 \\ 5 & 9 & 6\end{array}\right)\left(\begin{array}{cc}3 & -8 \\ -1 & 4 \\ 7 & 2\end{array}\right) \quad\left(\begin{array}{cc}-26 & 28 \\ 18 & 88\end{array}\right)$
A. $\binom{3}{-2}\left(\begin{array}{lll}2 & 4 & -5\end{array}\right)$
$\left(\begin{array}{ccc}6 & 12 & -15 \\ -4 & -8 & 10\end{array}\right)$
\&8. $\left(\begin{array}{cc}2 & 4 \\ 5 & 6 \\ -3 & 7\end{array}\right)\left(\begin{array}{cc}-1 & 3 \\ 2 & -5\end{array}\right)$
$\left(\begin{array}{ll}6 & -14 \\ 7 & -15 \\ 17 & -44\end{array}\right)$
6. $\left(\begin{array}{lll}4 & 2 & 10\end{array}\right)\left(\begin{array}{cc}3 & 5 \\ 1 & -4 \\ -2 & 6\end{array}\right)$

4. Determinant of Matrices

- For a 2×2 matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, the determinant $\left|\begin{array}{ll}a & c \\ c & d\end{array}\right|=a d-b c$.
- For a 3×3 matrices $\left(\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right)$, the determinant

$$
\begin{aligned}
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right| & =a_{1}\left|\begin{array}{ll}
b_{2} & c_{2} \\
b_{3} & c_{3}
\end{array}\right|-b_{1}\left|\begin{array}{ll}
a_{2} & c_{2} \\
a_{3} & c_{3}
\end{array}\right|+c_{1}\left|\begin{array}{ll}
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right| \\
& =a_{1} b_{2} c_{3}+b_{1} c_{2} a_{3}+c_{1} a_{2} b_{3}-a_{3} b_{2} c_{1}-b_{3} c_{2} a_{1}-c_{3} a_{2} b_{1}
\end{aligned}
$$

Example 7: Find the determinant for the following matrices
(a) $\left(\begin{array}{cc}-4 & 2 \\ 1 & 3\end{array}\right)$
(b) $\left(\begin{array}{cc}-2 & 3 \\ -3 & -1\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & -2 & 3 \\ 2 & 3 & -4 \\ 3 & -2 & 5\end{array}\right)$

Exercise 3: Find the value of determinant for the following matrices.

〕. $\quad\left(\begin{array}{cc}2 & -3 \\ 5 & 7\end{array}\right)$
2. $\quad\left(\begin{array}{ll}-6 & -7 \\ -8 & -9\end{array}\right)$
3. $\quad\left(\begin{array}{cc}12 & -20 \\ -21 & 35\end{array}\right)$
4. $\quad\left(\begin{array}{lll}1 & 5 & 1 \\ 1 & 6 & 3 \\ 9 & 8 & 9\end{array}\right)$
5. $\quad\left(\begin{array}{ccc}3 & 1 & -2 \\ 0 & -1 & 1 \\ 4 & 2 & 5\end{array}\right)$

5. Inverse Matrix

- Identity matrix, $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, where the elements along the principal diagonal are all 1 's while the other elements are all 0's.
- Inverse matrix for $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is $A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$. The expression $a d-b c$ is called the determinant of the matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and is denoted by det M or $|M|$ or $|a d-b c|$
- $\quad A A^{-1}=I$ and $A^{-1} A=I$

Example 8: State whether inverse matrix exist in the following matrices. If yes, calculate the inverse matrix.
(a) $\left(\begin{array}{cc}2 & 3 \\ -1 & 4\end{array}\right)$
(b) $\left(\begin{array}{cc}4 & -6 \\ -6 & 9\end{array}\right)$

Example 9: If the inverse matrix doesn't exist, find the value of x in $\left(\begin{array}{cc}5-x & 4 \\ 2 & 3-x\end{array}\right)$
Example 10: Given that $A=\left(\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right)$ and $B=\left(\begin{array}{cc}-1 & 2 \\ 2 & -3\end{array}\right)$, find
(a) A^{-1}
(b) if $A X=B$, find X
(c) if $Y A=B$, find Y

Exercise 4: Find the inverse matrix for each of the matrices given below:
ㄱ. $A=\left(\begin{array}{ll}3 & 2 \\ 4 & 2\end{array}\right) \quad\left(\begin{array}{cc}-1 & 1 \\ 2 & \frac{-3}{2}\end{array}\right)$
2. $B=\left(\begin{array}{ll}9 & 7 \\ 5 & 4\end{array}\right) \quad\left(\begin{array}{cc}4 & -7 \\ -5 & 9\end{array}\right)$
ว. $C=\left(\begin{array}{cc}6 & 4 \\ -4 & -3\end{array}\right) \quad\left(\begin{array}{cc}\frac{3}{2} & 2 \\ -2 & -3\end{array}\right)$
4. $D=\left(\begin{array}{cc}3 & 7 \\ -1 & -3\end{array}\right) \quad\left(\begin{array}{cc}\frac{3}{2} & \frac{7}{2} \\ \frac{-1}{2} & -\frac{3}{2}\end{array}\right)$

6. Solving Simultaneous Equation using Matrix

Example 11: By using matrix method, solve $\left\{\begin{array}{l}4 x+7 y=3 \\ 2 x-5 y=-7\end{array}\right.$

Exercise 5:

1. Solve the following simultaneous equation using the matrix method.
a) $\begin{aligned} & 4 x+9 y=31 \\ & -2 x+5 y=13\end{aligned}$
$1,3 \quad$ b) $\begin{aligned} & x+y=4 \\ & 3 x-y=14\end{aligned}$
2,2
c) $\begin{aligned} & 3 x-2 y=19 \\ & 4 x+5 y=-13\end{aligned}$
3,-5
d) $\begin{aligned} & 4 x=8-3 y \\ & 8 x=21-9 y\end{aligned}$
$\frac{3}{4}, \frac{5}{3}$
e) $\begin{aligned} & 3 x+5 y+4=0 \\ & x+3 y-6=0\end{aligned} \quad-10.5,5.5$
f) $\begin{aligned} & 2 x+3 y=3 \\ & -4 x-4 y=2\end{aligned}$
2. Given $P\left(\begin{array}{ll}3 & 2 \\ 5 & 4\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, find $P \cdot\left(\begin{array}{cc}2 & -1 \\ \frac{-5}{2} & \frac{3}{2}\end{array}\right)$
3. Given $Q\left(\begin{array}{cc}4 & -9 \\ -2 & 5\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, find $Q \cdot\left(\begin{array}{cc}\frac{5}{2} & \frac{9}{2} \\ 1 & 2\end{array}\right)$
4. Find the inverse matrix of $A=\left(\begin{array}{cc}2 & 4 \\ -3 & -7\end{array}\right)$. Hence solve the system equations $\left\{\begin{array}{l}2 x+4 y=-2 \\ -3 x-7 y=6\end{array}\binom{\frac{7}{2}}{\frac{-3}{2},-1} 5,-3\right.$
5. Find the inverse matrix of $P=\left(\begin{array}{cc}1 & -2 \\ 3 & 4\end{array}\right)$. Hence solve the system equations $\left\{\begin{array}{l}x-2 y=-12 \\ 3 x+4 y=34\end{array}\left(\begin{array}{ll}0.4 & 0.2 \\ -0.3 & 1\end{array}\right) 2,7\right.$
