SCIENCE FORM 2

CHAPTER 7 DYNAMICS

Forces

- a push or a pull
- we unable to see a force, but we can see and feel the effects of a force

Force can :

i. changes object's position
ii. changes object's direction
iii. change object's shape
iv. change object's speed (increase/ decrease/ stop it)

Types of forces

A. gravitational force

- the force that makes things fall to the ground
B. magnetic force
- force which acts on iron, steel and other magnetic materials
C. electrostatic force
- force due to electrical charge
D. frictional force
- force acting on the surface of an object when it moves against the surface of another object

Measurement of force

- SI unit : newton (N)
- measured by using spring balance or newton balance

Application of frictional force

- friction opposes the movement of objects which rub against one another
- stop pedalling : bicycle slow down and stop
- without friction the climber would not be able to hang onto the cliff

Advantage of friction

- it is a resistance force that slows down to prevent motion
- friction hold our shoes to the ground, allowing us to walk
- friction between our hand and surface of glass helps to keep the glass on place and not fall
- friction holds the nail in the wood or wall
- friction between bow and violin stings produce sound
- friction of tyres against the road to stop a bicycle
- friction used by a pencil erasers to rub off

Disadvantage of friction

- waste of energy, wear down parts and cause things to heat up
- friction cause movement more difficult
- waste of energy or fuel, excess friction uses extra fuel or energy to keep the vehicle from moving
- rubbing parts together produce heat and noises
- friction wears things out

Application of

a) increasing friction

- rubber pads are fixed to the bases of many household appliances to keep them in place
- tyres are designed with raised tread to grip the road tightly and disperse water when the road is wet
- rubber mat in a bathroom prevents us from slipping
- dancers score the soles of their shoes to increase the friction between the floor and the shoe, so they do not slip
b) decreasing friction
- ball bearing is used to reduce friction between surfaces of wheel and axle (in order to rotate faster)
- heavy objects have wheels fixed on them, enables us to move the objects more easily
- conveyor moves objects from one point to another with rollers
- lubricants used to reduce friction
- cars are streamlined to reduce friction

Application of work

- Work is done when a force that is applied to an object moves the object
- if a force is exerted but the object does not move, then no work is done
- when work is done, energy is transferred from one place to another
- SI unit: Joule
- the amount of work done depends on
a. the force on the object
b. the distance the object moves

$$
\begin{aligned}
\text { Work done }(\mathrm{J})= & \text { Force }(\mathrm{N}) \times \text { Distance }(\mathrm{m}) \\
& \mathrm{w}=\mathrm{Fxd}
\end{aligned}
$$

Application of power

- power is the rate at which work is done

$$
- \text { Power }=\frac{\text { work done }(J)}{\text { time taken }(s)}
$$

- unit : J s ${ }^{-1}$ or watt

$$
\mathrm{J} \mathrm{~s}^{-1}=1 \text { watt }
$$

The Classroom Learning Academy

Exercise

1. A horizontal force of 50 N is applied to push an object a distance 2.0 m on a table. What is the work done by the force?
2. A man does 1500 J of work to lift a box to a height of 2 m . What is the weight of the box?
3. A motor can life an object weighing 200 N to a height of 5 m in 10 s . What is the power delivered by the motor?
4. A lift can carry 4 people to the top of a 50 m building in 2 minutes. What is the power delivered by the motor of the lift? The average mass of one person is 72 kg .[Assume $1 \mathrm{~kg}=$ $10 \mathrm{~N}]$
