SCIENCE FORM 1 CHAPTER 7 HEAT

Heat is energy that makes an object hot.

- The Sun is the primary source of heat energy.
- Heat can be used to do work.
- Heat energy is also called as thermal energy.
- Heat can be produced in various ways from different forms of energy:
 - o All forms of burning
 - All hot objects
 - Friction
 - Electricity
 - o Chemical reaction

Uses of Heat energy in our daily life

- To cook food and boil water for drinking.
- To dry clothes and hair.
- To drive steam generators that produce electricity.
- To evaporate sea water to produce salt and to dry tea leaves.
- To warm our body during cold weather.
- To sterilise instruments

Differences between Heat and temperature

Heat	Temperature
Heat is a form of energy	Temperature is the measure of the degree of hotness or coldness of an object by using a thermometer the substance
Heat energy is the total amount of energy of all the particles in the substance	It is not a measure of the quantity
The unit of measuring heat energy is the joule (J).	It is not a measure of the quantity of heat in a substance.
An object becomes hotter when it absorbs heat and becomes cooler when it loses heat	The two common temperature scales are the Celsius(°C) and Kelvin (K) scales.

Temperature is also a measure of the
average value of the kinetic energy of
each particle in a substance.

- Expansion The volume of the object generally increases when the object is heated.
- Contraction The volume of the object generally decreases when the object is cooled. generally decreases when the object is cooled.

Heat Flow

Heat energy moves from an area of high temperature to an area of low temperature.

- The rate of heat transfer depends on the difference in temperature between the two objects.
- The greater the difference in temperature, the faster heat flows.

Heat can travel in three ways.

conduction

- Conduction is the flow of heat through solids.
- The particles in the medium do not flow.
- Heat is transferred from the hotter end of the object to the cooler end by the vibration of particles in the object.
- Metals are very good conductor of heat

convection

- Convection is the transfer of heat from one part of a fluid (substances which can flow) to another by the circulating movement of that heated fluid.
- Liquids and gases are fluids.
- This circulating movement is called a convection

radiation

- Radiation is a process of heat transfer that does not require a medium.
- Radiation can take place in a vacuum.
- Properties of radiant heat:
 - Travels as electromagnetic waves
 - o Travels at the speed of light

- o Travels in a straight line
- o Travels through a vacuum
- Can be absorbed or reflected

Heat Flow in Natural Phenomena

1. Sea breeze

- During the day, the land becomes hot faster than the water.
- The air above the warm land is heated by conduction and becomes less dense and rises.
- The cooler and denser air from over the sea flows in over the land to fill the place left by the heated air.

2. Land breeze

- At night, the land cools faster than the sea.
- The hot air above the sea rises and the cool air above the land flows out towards the sea.

The Effects of Heat Flow on Matter

1. Conductors

- A conductor is a material that allows heat to move through it easily.
- A good heat conductor becomes hot or cold easily.
- Generally, metals are very good heat conductors.
- Example: silver, mercury, copper, iron, etc.

2. Insulators

- Insulators or poor heat conductors conduct heat much more slowly.
- Generally, non -metals are good insulator.
- Example: air, water, glass, asbestos, polystyrene, etc.
- A vacuum is the best insulator.

Uses of Heat Conductors in daily life

- Cooking utensils
 - o Handles of cooking utensils are made of insulators like wood or plastic.
 - o In this way the handles will not get too hot for us to hold.
 - To prevent table tops from being burnt by hot kitchenware, table mats are used as heat insulators
- In laboratory
 - o Asbestos sheets or tiles to prevent the table from being burnt.
- Woolen blanket
 - o It is used to keep the body warm.
 - o The wool traps air which is an insulator.
 - The woolen blanket and the air layer prevent heat loss from the body.
- Sawdust
 - o It is used to cover ice blocks to slow down melting.
 - Sawdust prevents heat from reaching the ice.
- Sleeping bags
 - Sleeping bags are made of thick cotton which keeps the body warm.
 - The cotton and air in the bags are good heat insulator
- Styrofoam food containers keep food warm

Effect of heat on matter

- Matter undergoes a change of state when amount of heat energy in it changes.
- When a substance is heated, it absorbs heat.
- When a substance cools down, it release heat

The physical processes involved in the changes of state of matter are

- melting,
- condensation
- boiling,
- freezing
- evaporation
- sublimation

Melting and Freezing

- Melting is a process in which a substance changes from being in a solid state to being in a liquid state.
- The temperature at which a pure substance melts is called the melting point of the substance.
- Freezing is a process when a liquid becomes a solid.
- The temperature at which a pure substance freezes is called the freezing point of the substance.

Boiling and Condensation

- Boiling is the process by which a substance changes from a liquid state to a gaseous state.
- The temperature at which a substance boils is called its boiling point.
- Condensation takes place when a substance changes from a gaseous state to a liquid state.

Evaporation

- Evaporation is a process in which a liquid becomes a gas without boiling.
- Evaporation takes place at any temperature an heat is absorbed from the surroundings.
- It only occurs on the exposed surface of a liquid.

Sublimation

- Sublimation is the process in which substance changes directly from a solid to a gas or from a gas to a solid without having changed into a liquid first when is heated or cooled respectively.
- A piece of dry ice (solid carbon dioxide) will absorb heat from its surroundings and quickly become carbon dioxide gas
- The mothballs in the cupboard and some air fresheners also undergo sublimation.
- Substances in the laboratory that can be used to demonstrate sublimation are iodine crystal, sulphur, ammonium chloride and naphthalene.