高中物理(一)

物理量的测量、单位和数据处理

主讲: 骆家豪

基本单位和导出单位

- 每个物理量 (physical quantities) 都有自己的单位,可分成:
- -- 基本量 (fundamental quantities)
 - → 对应的单位为基本单位 (fundamental units)
 - →例:长度(米)、时间(秒)、质量(千克)
- -- 导出量 (derived quantities)
 - → 对应的单位为导出单位 (derived units),是根据基本量之间的关系式由基本单位导出。
 - → 例: 体积(米³)、密度(千克•米-³)、速率(米•秒-¹)
- 可得出一套单位,形成单位制 (system of units)

国际单位制 (SI, International System of Units)

基本量		基本单位		
华文	英文	华文	英文	国际符号
长度	length	米 (公尺)	meter	m
质量	mass	千克 (公斤)	kilogram	kg
时间	time	秒	second	S
温度	temperature	凯尔文 (开尔文)	Kelvin	K
电流	current	安培	Ampere	A
发光强度	luminous intensity	烛光 (坎德拉)	candela	cd
摩尔数 (物质的量)	amount of substance (measured in moles)	摩尔	mole	mol

SI 词头 (SI prefixes)

因次	英文名称	华文名称	词头符号
10-1	deci	分	d
10-2	centi	厘	c
10-3	milli	亳	m
10-6	micro	微	μ
10-9	nano	纳[诺]	n
10-12	pico	皮[可]	p
10-15	femto	飞[母托]	f
10-18	atto	阿[托]	a
10-21	zepto	仄[普托]	Z
10-24	yocto	幺[科托]	У

因次	英文名称	华文名称	词头符号
10^{1}	deca	+	da
10^{2}	hecto	百	h
103	kilo	Ŧ	k
10^{6}	mega	兆	M
10^{9}	giga	吉[咖]	G
10^{12}	tera	太[拉]	T
10^{15}	peta	拍[它]	P
10^{18}	exa	艾[科萨]	E
10^{21}	zetta	泽[它]	Z
10 ²⁴	yotta	尧[它]	Y

量纲 (Dimensions)

- 用来表示一个物理量是由哪些基本量组成和怎样组成的式子。

- 基本量纲:

- [L]: 长度

- [M]: 质量

- [T]: 时间

- 每个物理方程等号两边的量纲必须一致。

例:

$$s = ut + \frac{1}{2}at$$

LHS:

:. LHS的量纲: [L]

RHS:

u: 初速度 → [LT⁻¹]

a: 加速度 → [LT⁻²]

t: 时间 \rightarrow [T]

: RHS的量纲:

第一项: [LT⁻¹][T] = [L]

第二项: $[LT^{-2}][T] = [LT^{-1}]$

由于第一项的量纲与第二项不同,因此不能互加,从中可看出此方程是错误的。

例:

$$s = ut + \frac{1}{2}at^2$$

LHS:

:. LHS的量纲: [L]

RHS:

u: 初速度 \rightarrow [LT⁻¹]

a: 加速度 → [LT⁻²]

t: 时间 \rightarrow [T]

: RHS的量纲:

第一项: [LT-1][T] = [L]

第二项: [LT⁻²][T]² = [L]

由于左式的量纲 = 右式的量纲, 因此此公式可能存在。

- 2. 已知压强的量纲为 [ML-1T-2],动压强的公式为 $p = \frac{1}{2} \rho v^2$,其中 p 为压强, ρ 为密度,v 为速度。 试以确认量纲方式判定此公式是否可能存在。
- 3. 已知功的量纲为 [ML 2 T 2]。若空气做功,其做的功为 $p\Delta V$,其中 p 为气体压强, ΔV 为气体的末体积和原体积的差。试以确认量纲方式判定此公式是否可能存在。
- 4. 牛顿的万有引力公式为 $F = \frac{Gm_1m_2}{r^2}$, 其中 F 为引力的大小,G 为万有引力常数, m_1 和 m_2 分别为物体 1 和 物体 2 的质量,r 为此二物体之间的距离。已知力的量纲为 $[MLT^{-2}]$ 。求万有引力常数,G 的量纲。

误差

- 进行实验时, 所得出的结果是不可能是完全一致 (很难达成)。

- 误差 (errors): 实验中所测出的值和真实的值的差异。可分成:

→ 系统误差 (systematic errors)

根源为不精确的实验仪器、方法粗略或实验原理不完善\错误的误差。

例:没有考虑空气阻力,进行热学实验时没有考虑散热损失。

→ 偶然误差 (random errors)

由偶然原因所造成的误差。

例:用尺测量一个物体的长度时所得出的结果有时偏大,有时偏小。

有效数字 (significant figures)

- 由于测量出的结果会有误差,因此从中所得的值是近似值。
- 例: 5.3 5.30 5.300
- 5.3 → 两个有效数字 (5,3), 3是不可靠数字。(可能是 5.29 或 5.31)
- 5.30 → 三个有效数字 (5,3,0), 0是不可靠数字。(可能是 5.312 或 5.287)
- 5.300 → 四个有效数字 (5,3,0,0), 最后面的 0 是不可靠数字。

(可能是 5.30022 或 5.2999)

小数最后的 0 有意义, 不可以随意舍去。

- 小数的第一个非零数字前面的"0"代表小数点位置,因此这个"0"无意义。 例: 0.21 (2个有效数字), 0.045 (2个有效数字), 0.00123 (3个有效数字)

科学计数法 (Scientific Notation)

例:

 $1\ 000\ 000\ 000\ 000\ 000\ 000\ m = 1\ \times\ 10^{21}\ m$

 $0.000\ 000\ 000\ 000\ 000\ 123\ s = 1.23\ \times\ 10^{-16}\ s$

例:

$$2 \text{ km} = \underline{\hspace{1cm}} \text{mm} = \underline{\hspace{1cm}} \text{Gm}$$

$$2 \text{ km} = 2 \text{ km} \times \frac{10^3 \text{ m}}{1 \text{ km}} = 2 \times 10^3 \text{ m} \times \frac{10 \text{ Gm}}{10^9 \text{ m}} = 2 \times 10^{-6} \text{ Gm}$$

$$24 \text{ hr} = \underline{\hspace{1cm}} \text{ ms} = \underline{\hspace{1cm}} \text{ ns}$$

$$24 \text{ hr} = 24 \text{ hr} \times 60 \frac{\text{min}}{\text{hr}} \times 60 \frac{\text{s}}{\text{min}} = 8.64 \times 10^4 \text{ s}$$

$$= 8.64 \times 10^4 \text{ s} \times \frac{1 \text{ ms}}{10^{-3} \text{ s}} = 8.64 \times 10^7 \text{ ms}$$

$$= 8.64 \times 10^4 \text{ s} \times \frac{1 \text{ ns}}{10^{-9} \text{ s}} = 8.64 \times 10^{13} \text{ ns}$$

$$90 \text{ km/h} = \underline{\hspace{1cm}} \text{m/s}$$

$$90 \text{ km/h} = 90 \frac{\text{km}}{\text{h}} = 90 \times \frac{1 \text{ km}}{1 \text{ h}}$$

$$1 \text{ km} = 1 \text{ km} \times \frac{10^3 \text{ m}}{1 \text{ km}} = 1 \times 10^3 \text{ m}$$

$$1 \text{ h} = 1 \text{ hr} \times 60 \frac{\text{min}}{\text{hr}} \times 60 \frac{\text{s}}{\text{min}} = 3600 \text{ s}$$

$$\therefore 90 \text{ km/h} = 90 \times \frac{1 \times 10^3 \text{ m}}{3600 \text{ s}} = 25 \text{ m/s}$$

$$12 \text{ cm}^2 = \underline{\qquad} \text{m}^2$$

$$12 \text{ cm}^2 = 12 \times \left(1 \text{ cm}\right)^2 \equiv 12 \times \left(1 \text{ cm} \times \frac{10^{-2} \text{ m}}{1 \text{ cm}}\right)^2 = 12 \times \left(10^{-2} \text{ m}\right)^2 = 12 \times \left(10^{-2}\right)^2 \text{ m}^2 = 1.2 \times 10^{-3} \text{ m}^2$$

完成以下空格:

1.
$$42.3 \text{ cm}^3 = \underline{\qquad} \mu \text{m}^3$$

2.
$$34.5 \text{ mm}^4 = \underline{\qquad} \text{dm}^4$$

3.
$$59.53 \text{ mm}^2/\text{hr} = \underline{\qquad} \text{m/s}$$

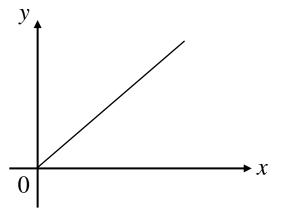
4.
$$967.41 \text{ g/cm}^3 = \underline{\qquad} \text{kg/m}^3$$

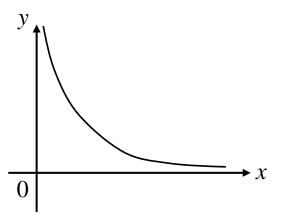
5.
$$83.35 \text{ kgms}^{-2} = \underline{\qquad} \text{mg} \cdot \text{cmmin}^{-2}$$

正比反比关系

例:

- y = kx (k 是一个常数) y随着x增加而增加。
 - :. y和x成正比 或


 $y \propto x$


-
$$y = \frac{c}{x}$$
 (c 是一个常数)

y随着x增加而减小。

$$\therefore y$$
和 x 成反比 或 $y \propto \frac{1}{r}$

$$y \propto \frac{1}{x}$$

标量 (scalar) 和向量 (vector)

- 标量:能显示大小、但不能显示方向的量。

例:温度、长度、时间、速率

- 向量: 能显示大小和方向的量。

例:力、速度、场强、加速度