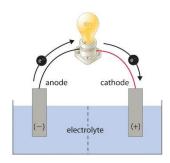

Redox reactions in electrolytic cell and chemical cell

-reactions that occur in electrolytic cells and chemical cells are redox reactions (involving transfer of electrons)

-whether it is an electrolytic cell or chemical cell, oxidation occurs at the anode and reduction occurs at the cathode

Redox reaction in an electrolytic cells

i. external circuit: during electrolysis, e⁻ flow from the anode (positive terminal) to cathode (negative terminal)


ii. anode (positive terminal)
-anion (negative ions) move towards the anode
-anions release e⁻ at the anode
-oxidation occurs at the anode

iii. cathode (negative terminal)
-cation (positive ions) move towards the cathode
-cations accept e⁻ from the cathode
-reduction occurs at the cathode

iv. electrolyte

-cations move towards the cathode
-anions move towards the anode
-the flow of ions to the electrode constitute the
flow of electric current in the electrolyte

Redox reaction in chemical cells

i. external circuit

-electric current is produced because e⁻ flow from the more electropositive electrode (negative terminal) to the less electropositive electrode (positive terminal)

ii.anode (negative terminal)

-zinc dissolves to form zinc ions with the release of $\ensuremath{\mathsf{e}}^{\ensuremath{\mathsf{-}}}$

 $Zn \rightarrow Zn^{2+} + 2e^{-}$

-the e⁻ flow through the external circuit to the copper electrode -oxidation occurs at anode

iii. cathode (positive terminal)

-H⁺ ions accept e⁻ from zinc to form hydrogen gas 2H⁺ +2e⁻ \rightarrow H₂ -effervescence occurs around the copper electrode -reduction occurs at the cathode

iv. electrolyte

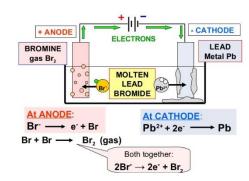
-the concentration of Zn^{2+} ions increases, while the concentration of H^+ ions decreases -the overall reaction that occurs in the chemical cell

 $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$

-zinc acts as the reducing agent and hydrogen ions acts as the oxidising agent

Redox reaction in electrolyte cells

-at anode: oxidation


Aⁿ⁻ → A+ne⁻

-at cathode: reduction

Bⁿ⁺ +ne⁻ → B

-e⁻ flow from the anode (positive electrode) to the cathode (negative electrode) through the connecting wire

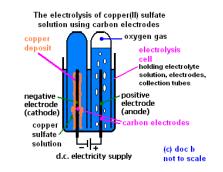
I. electrolysis of molten lead(II) bromide

i.anode - Br⁻ ions lose e⁻ to form bromine molecule

 $2Br \rightarrow Br_2 + 2e^{-1}$

-oxidation process -oxidation number from -1 to 0 ii. cathode -Pb²⁺ ions gain e⁻ to form lead metal

 $Pb^{2+} + 2e^- \rightarrow Pb$


-reduction process -oxidation number from +2 to 0

overall reaction

-breakdown of lead (II) bromide to give lead and bromine

 $PbBr_2 \rightarrow Pb + Br_2$

II. electrolysis of copper (II) sulphate solution

i. anode:

OH are selectively discharged

40H⁻ →O₂ +2H₂O +4e⁻

-OH $^{\text{-}}$ ions are oxidised to oxygen gas -SO4 $^{2\text{-}}$ ions remain in solution

ii. cathode:

-Cu²⁺ ions are selectively discharge at cathode

Cu²+ +2e⁻ → Cu

-Cu²⁺ ions are reduced to copper metal

-H⁺ ions remain in solution

Overall reaction

-copper metal is deposited at cathode, oxygen has given off at anode and solution become more acidic

reduction

2CuSO₄ +2H₂O → 2Cu +O₂ +2 H₂SO₄

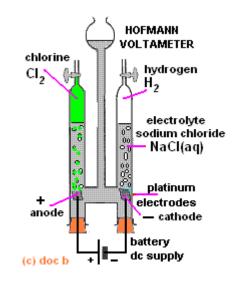
Oxidation

III. electrolysis of copper (II) sulphate solution using copper electrodes

i. anode: (oxidation)
-copper anode dissolves (corrodes) to form copper(II) ions
Cu → Cu²⁺ +2e⁻

-electrode becomes thinner

ii. cathode: (reduction)


Cu²+ +2e⁻ → Cu

-Cu²⁺ ions are selectively discharge to form copper atom

iii. overall reaction

-transfer of copper e⁻ from anode to cathode -concentration of copper (II) sulphate does not change and blue colour electrolyte does not fade

IV. electrolysis of concentrated sodium chloride solution

i.anode: chloride ions(Cl⁻) is selectively discharged at anode

 $2Cl^{-} \rightarrow Cl_2 + 2e^{-}$ -Cl⁻ ions are oxidised to chlorine gas -OH⁻ ions remain in the solution

ii.cathode:

-hydrogen ions (H $^{+}$) is selectively discharged at cathode

2H⁺ +2e⁻ → H₂

-at cathode, H⁺ ions are reduced to hydrogen gas -Na⁺ ions remain in the solution

```
iii. overall reaction
```

oxidation $2NaCl + 2H_2O \rightarrow 2NaOH + H_2 + Cl_2$ Reduction

-electrolysis of concentrated sodium chloride solution produces one volume of hydrogen at the cathode, one volume of chlorine at the anode and sodium hydroxide solution

V. electrolysis of dilute sodium chloride solution

i. anode:

-OH $^{\mbox{\tiny -}}$ ions donate $e^{\mbox{\tiny -}}$ to the anode to form oxygen and water

 $4OH^{-} \rightarrow O_2 + 2H_2O + 4e^{-}$

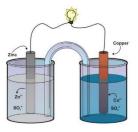
ii.cathode: -H⁺ ions gain e⁻ from the cathode to form hydrogen gas $2H^+ + 2e^- \rightarrow H_2$

iii.overall reaction

oxidation $2H_2O \rightarrow 2H_2 + O_2$ Reduction

-electrolysis of dilute sodium chloride solution produces two volume of hydrogen at the cathode and one volume of oxygen at the anode -since water is being removed (by decomposition to form H₂ and O₂) the concentration of sodium chloride increases gradually

Redox reaction in chemical cells


I. Daniell cell

-function of porous pot

i. separate two different solution

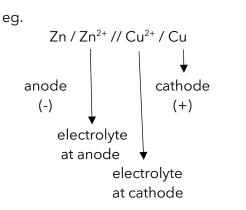
ii. complete the electric circuit by allowing the ions to pass through it

-salt bridge can be used to replace porous pot for same function

i.anode (oxidation) -negative electrode -zinc is more electropositive than copper \therefore greater tendency to donate e⁻ Zn \rightarrow Zn²⁺ +2e⁻ ii. cathode (reduction) -positive electrode Cu²⁺ ions gain e⁻ from zinc is reduced to copper metal Cu²⁺ +2e⁻ \rightarrow Cu -Cu²⁺ act as oxidizing agent iii. overall reaction

$$coxidised$$

Zn +Cu²⁺ \rightarrow Zn²⁺ + Cu

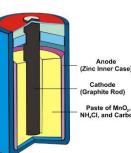

reduced

-displacement reaction occurs -concentration of Zn²⁺ ions in the solution increase

-blue colour of copper(II) sulphate solution fades gradually as more copper is deposited and concentration of Cu²⁺ decreases -mass of zinc electrode decreases -mass of copper electrode increases

Cell symbol

-used to represent chemical cells -symbol '// ' represents the porous pot/ salt bridge



voltage of Daniell cell -if the concentration of both ZnSO₄ & CuSO₄ solution are 1.0mol dm⁻³, the maximum voltage =1.10V

note

-the voltage of cell will decrease with time when the cell is being used because concentration of Cu²⁺ ions decreases

ll Dry cell

i.anode (negative terminal) -zinc container as anode -zinc oxidised to Zn^{2+} $Zn \rightarrow Zn^{2+} + 2e^{-}$ -oxidation occurs -e⁻ flow from zinc container to carbon rod ii. cathode (positive terminal) -carbon rod as cathode -NH₄⁺ is reduced to NH₃ and H₂ 2NH₄⁺ + 2e⁻ \rightarrow 2NH₃ + H₂

note

 H_2 gas is removed by MnO_2

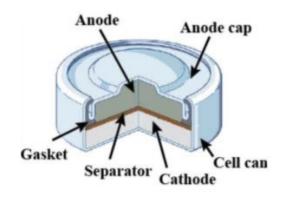
 $2MnO_2 + H_2 \rightarrow Mn_2O_3 + H_2O$

iii. overall reaction Zn + 2NH₄⁺ +2MnO₂ \rightarrow Zn²⁺ +2NH₃ +MnO₂ +H₂O

Oxidizing agent = NH4⁺ reducing agent = zinc

III Alkaline cell

i.anode : (negative terminal) -zinc container -zinc oxidised to Zn²⁺


$Zn \rightarrow Zn^{2+} + 2e^{-1}$

-e⁻ flow from zinc container to MnO₂ -acts as reducing agent, oxidation occurs ii. cathode (positive terminal)-manganese (IV) oxide powder-MnO₂ reduced to manganese (III) oxide Mn₂O₃

 $2MnO_2 + H_2O + 2e^- \rightarrow Mn_2O_3 + 2 OH^-$

iii. overall reaction Zn + 2MnO₂ +H₂O \rightarrow Zn²⁺ + Mn₂O₃ +2OH⁻

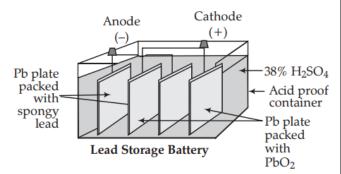
IV. mercury cell

i. anode (negative terminal)

-zinc metal as anode -zinc oxidise to Zn²⁺

 $Zn + 2OH^{-} \rightarrow Zn (OH)_2 + 2e^{-}$

-e⁻ flow from zinc electrode to HgO -oxidation occurs, zinc act as reducing agent ii. cathode (positive terminal)


-mercury (II) oxide, HgO as cathode - HgO reduced to mercury HgO + H₂O + 2e⁻ \rightarrow Hg + 2OH⁻

-reduction occurs, mercury (II) oxide acts as oxidizing agent

iii. overall reaction

 $Zn + HgO + H_2O \rightarrow Zn (OH)_2 + Hg$

V. Lead-acid accumulator

-knows as car battery -can be recharge by passing a current through it

i. anode (negative terminal)
-lead plate as anode
-lead oxidise to lead (II) ions
Pb → Pb²⁺ +2e⁻
-oxidation occurs, lead act as reducing agent
-e⁻ given out at cathode flow through external circuit to positive terminal

-white precipitate PbSO₄ is produced when Pb²⁺ ions react with SO₄²⁻ ions Pb²⁺ + SO₄²⁻ \rightarrow PbSO₄ \therefore negative electrode become white solid

-overall reaction at anode: Pb \rightarrow Pb²⁺+2e⁻

 $Pb^{2+} + SO_4^{2-} \rightarrow PbSO_4$

 $Pb + SO_4^2 \rightarrow PbSO_4 + 2e^-$

(grey) (white)

ii. cathode (positive terminal)

-lead plate with coat PbO₂ as cathode -lead (IV) oxide is reduced to Pb²⁺ ions by accepting e⁻

 $PbO_2 + 4H^+ + 2e^- \rightarrow Pb^{2+} + 2H_2O$

-white solid produced when Pb^{2+} ions react with SO_4^{2-} ions in sulphuric acid to form lead (II) sulphate $Pb^{2+} + SO_4^{2-} \rightarrow PbSO_4$

-white solid, lead (II) sulphate deposit on surface of positive electrode to form white coating -overall reaction at cathode $Pb_2O + 4H^+ + 2e^- \rightarrow Pb^{2+} + 2H_2O$ $Pb^{2+} + SO_4^{2-} \rightarrow PbSO_4$

 $\begin{array}{ll} PbO_2 + 4H^+ + SO_4^{2-} + 2e^- \rightarrow PbSO_4 + 2H_2O \\ (brown) & (white) \end{array}$

iii. overall reaction Pb + PbO₂ +4H⁺ +2SO₄²⁻ \rightarrow 2PbSO₄ +2 H₂O note -sulphuric acid is used up when discharge

recharging lead acid accumulator -dc current passed through in direction opposite to the discharge I. negative terminal (reduction) $PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$ white grey

 \therefore lead (II) sulphate reduced to lead

II. positive terminal (oxidation)

white brown PbSO₄ + 2H₂O \rightarrow PbO₂ + 4H⁺ + SO₄²⁻

 \therefore lead (II) sulphate oxidised to lead (IV) oxide

Overall reaction $2PbSO_4 + 2H_2O \rightarrow Pb + PbO_2 + 4H^+ + 2SO_4^{2-}$

 $2H_2SO_4 \\$

Comparison between electrolytic cell and chemical cell

Electrolytic cell	Chemical cell
Anode	Anode
-positive and terminal in	-negative terminal in chemical cell
electrolytic cell	-oxidation occurs
-oxidation occurs	-release e ⁻
-anions release e ⁻ from cathode to	
anode	
Cathode	Cathode
-negative terminal in electrolytic	-positive terminal in chemical cell
cell	-reduction occurs
-reduction occurs	-accept e ⁻
-cations accept e ⁻	
-for both cells, anions move to anode while cations move to cathode	

Changes of oxidation number in a substance

- i. extracting metal from its ore
- ii. corrosion of metal
- iii. preventing corrosion of metal
- iv. generation of electricity by cells
- v. recycling of metals