Transformation

1. Find the new equation of the curve $x^{2}+y^{2}-4 x+6 y-3=0$ if the origin is moved to the point $(2,-3)$.
2. Translate the origin to the fixed point $(2,-3)$, the equation of a circle is changed to $x^{2}+y^{2}=16$. Find the equation of this circle before translation
3. Using translation of axes, the equation $x^{2}+y^{2}-6 x+12 y-4=0$ is changed to $x^{2}+y^{2}-49=$ 0 , find the new origin in the old coordinate system
4. Rotation anticlockwise through an angle of $\frac{\pi}{6}$, find the new coordinates of the point $(-1, \sqrt{3})$
5. Find the equation of the curve obtained by rotating the curve $\frac{x^{2}}{2}+y^{2}=1$ clockwise through an angle of $\frac{\pi}{2}$ about the origin
6. The new equation of the curve obtained by rotating the curve $x^{2}+\frac{y^{2}}{2}=1$ through an angle of θ about the origin is $\frac{x^{\prime 2}}{2}+y^{\prime 2}=1$. Find the possible values of θ where $-\pi \leq \theta \leq \pi$
7. Identify the curve $73 x^{2}+72 x y+52 y^{2}+30 x-40 y-75=0$
8. Find the $X Y$-coordinates of the given point if the axes are rotated through specific angle
a. $(1,4), 30^{\circ}$
b. $(-2,4), 60^{\circ}$
9. Use rotation of axes to identify and simplify
a. $x^{2}-2 x y+y^{2}-x-y=0$
b. $x^{2}+x y+y^{2}=1$
c. $97 x^{2}+192 x y+153 y^{2}=225$
d. $2 \sqrt{3} x y-2 y^{2}-\sqrt{3} x-y=0$
10. Use rotation of axes to show that the equation $36 x^{2}+96 x y+64 x^{2}+20 x-15 y+25=0$ represents a parabola. Find the $X Y$-coordinates of the focus. The find the xy-coordinates of the focus
11. Write the equation $x y-1=0$ in standard form
12. Simplify the graph of $7 x^{2}-6 \sqrt{3} x y+13 y^{2}-16=0$
13. Simplify the graph of $x^{2}-4 x y+4 y^{2}+5 \sqrt{5} y+1=0$
14. Using translation of axes, the equation $x y-2 x+3 y+5=0$ is changed to $x y+11=0$, what is the new origin
15. Using translation of axes, the equation $4 x^{2}+9 y^{2}-8 x+18 y-23=0$ is changed to $4 x^{2}+$ $9 y^{2}=36$, find the new origin
16. Translate the origin to fixed point $(2,-1)$, the find the new equation $x^{2}-y^{2}-4 x-2 y-1=0$
17. Find the new equation of the curve $x^{2}-y^{2}-2 x-4 y-11=0$ if the origin is moved to the point $(1,-2)$
18. Find the equation of the curve obtained by rotating the hyperbola $x y=\frac{1}{2}$ clockwise through an angle of $\frac{1}{4} \pi$ about the origin
19. A straight line $3 x+4 y=12$ rotates about the origin through an angle of 180°. Find the new equation
20. Find the new equation of the curve $x y=1$ if the axes are rotated anticlockwise through 45°
