Trigonometry revision 4

- 1. a) Express $2 \sin \theta + \cos \theta$ in the form $R \sin(\theta + \alpha)$ where R > 0 and $0^{\circ} \le \alpha \le 90^{\circ}$, giving the exact value of R and the value of α correct to 2 decimal places.
- b) Hence, solve the equation $2 \sin \theta + \cos \theta = 2$ for $0^{\circ} \le \theta \le 360^{\circ}$
- 2. Express $3\cos\theta + \sqrt{3}\sin\theta$ in the form $R\cos(\theta \alpha)$ where R > 0 and $0^{\circ} \le \alpha \le 90^{\circ}$, giving the exact value of R and the value of α .
- b) Find the greatest and least possible values of $[(3\cos\theta + \sqrt{3}\sin\theta)^2 5]$ as θ varies
- 3. a)Express each of the following in the form R $\cos(\theta \alpha)$ where R > 0 and $0^{\circ} \le \alpha \le 90^{\circ}$, giving the exact value of R and the value of α to correct to 2 decimal places
- i. $3\cos\theta + 4\sin\theta$
- ii. $5\cos\theta + 12\sin\theta$
- iii. $\sqrt{2}\cos\theta + \sin\theta$
- iv. $\sin \theta + \cos \theta$
- b) Find the greatest and least possible values of each of the expressions in part (a)
- c) For each of the expressions in part (a) find a value of θ for which the expression has its greatest value
- 5.a) Express $\sin \theta + 2\cos \theta$ in the form $R \sin(\theta + \alpha)$ where R > 0 and $0^{\circ} \le \alpha \le 90^{\circ}$, giving the exact value of R and the value of α correct to 2 decimal places.
- b) Hence, solve the equation $\sin\theta + 2\cos\theta = 1$ for $0^{\circ} \le \theta \le 360^{\circ}$
- 6. a) Express $\sqrt{3} \sin \theta \cos \theta$ in the form $R \sin(\theta \alpha)$ where R > 0 and $0^{\circ} \le \alpha \le 90^{\circ}$, giving the exact value of R and α .
- b) Hence, solve the equation $\sqrt{3}\sin\theta \cos\theta = 1$ for $0^{\circ} \le \theta \le 360^{\circ}$
- c) Find the greatest and least possible values of $(\sqrt{3} \sin \theta \cos \theta)^2$ as θ varies
- 7.a) Express $2\cos\theta 2\sin\theta$ in the form $R\cos(\theta + \alpha)$ where R > 0 and $0^{\circ} \le \alpha \le 90^{\circ}$, giving the exact value of R and α .
- b) Hence, solve the equation $\cos \theta \sin \theta = \frac{1}{2}$ for $0^{\circ} \le \theta \le 360^{\circ}$

- 8. a) Express $4\cos\theta + 6\sin\theta$ in the form $R\cos(\theta \alpha)$ where R > 0 and $0^{\circ} \le \alpha \le 90^{\circ}$, giving the exact value of R and the value of α correct to 2 decimal places.
- b) Hence, solve the equation $4\cos\theta + 6\sin\theta = 5$ for $0^{\circ} \le \theta \le 360^{\circ}$
- c) Find the greatest and least possible values of $[(4\cos\theta + 6\sin\theta)^2 + 5]$ as θ varies
- 9. a) Express $2 \sin 2x + \cos 2x$ in the form $R \sin (2x + \alpha)$ where R > 0 and $0^{\circ} \le \alpha \le 90^{\circ}$, giving the exact value of R and the value of α correct to 2 decimal places.
- b) Hence, solve the equation $2 \sin 2x + \cos 2x = 1$ for $0^{\circ} \le x \le 360^{\circ}$
- c) Find the greatest and least possible values of $10 (2 \sin 2x + \cos 2x)$ as x varies
- 10. a) Express $\sin x + 4\cos x$ in the form $R\sin(x + \alpha)$ where R > 0 and $0 \le \alpha \le \frac{\pi}{2}$, giving the exact value of R and the value of α correct to 3 decimal places.
- b) Hence, solve the equation $\sin x + 4\cos x = 3$ for $0 \le x \le 2\pi$
- c) Find the greatest and least possible values of $[(\sin x + 4\cos x)^2 1]$ as x varies

SJUEC.COM