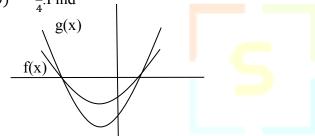

- 1. The function $f(x) = -x^2 4ax + b^2 + 5a^2$ has a maximum value of $2b^2 + 4a 4$, where a and b are constants.
 - a. By using completing the square, show that b=3a-2
 - b. Calculate the values of a and b if the graph of function f(x) is symmetrical about line x = 3
- 2. A quadratic function is defined by f(x) = (x-3)(x+1) 2x 2. Find the maximum or minimum value of the function f(x). Hence, sketch the graph f(x).
- 3. Find range of values of h if (2h + 4)(h 3) > 4h 4
- 4. A quadratic function is defined by $f(x) = 2x^2 6x + 8$
 - a. Express f(x) in the form of $a(x+p)^2+q$, whee a,p and q are constants
 - b. Determine the maximum or minimum value of f(x)
 - c. Sketch the graph of function f(x)
- 5. Given the quadratic function $f(x) = 6x 3x^2 8 = q + a(x + p)^2$
 - a. Find the values of a,p and q
 - b. Sketch the graph of f(x) for $-2 \le x \le 3$
 - c. State the range of f(x) for given domain
- 6. The diagram below shows the graph of the quadratic function $f(x) = |a(x+1)^2 + b|$. The maximum point of the quadratic function is (-1,9). Find


- a. The values of a and b
- b. The range of f(x) for the domain $-5 \le x \le -2$
- 7. a. Find the range of values of x if $5x^2 + 6 \ge 17x$
 - b. Given that $f: x \to (2x + 1)(2x 3)$, find the values of h if f(h) > 7h
- 8. a. Find the range of values of x if $5x \le 2x^2 12$
 - b. Given that the straight line y = 2x-5 and the curve $3x^2 11x + k = 0$ do not intersect show that $k > 19\frac{1}{12}$
- 9. Find the maximum or minimum value of y if $y + 4x = 2x^2 + 3$. Hence, sketch the graph of function y
- 10. a. The quadratic equation $2x^2 + px = 3x 2$, where p is a constant, has roots h and k. Find the range values of p
 - b. Find the range of values of x that satisfy the inequality $(2x 5)(2x 3) \ge 4x 6$

- 11. Find the range of p if $2x^2 + 2px + 1 = 2x + p$ does not have any real roots
- 12. The quadratic function $f(x) = 4(x-p)^2 + q$, where p and q are constants, has a minimum point at H(2a-1,3a+2)
 - a. Express p and q in terms of a
 - b. Find the range of values of r such that f(x) = r has two real roots when a=1 Type equation here.
- 13. The diagram below shows the graph of quadratic equation $f(x) = px^2 2px + q$

- a. state the value of q
- b. determine the range of values of p
- 14. The diagram below shoes the graph of the quadratic functions $f(x) = 2x^2 + 2x 4$ and g(x) =

$$(x+p)^2 - \frac{9}{4}$$
. Find

- a. the value of p
- b. the minimum points of both function f(x) and g(x)