Polynomials, factor theorem, remainder theorem

1. Show that $(2 \mathrm{x}+1)$ is a factor of $2 x^{3}-3 x^{2}+2 x+2$
2. a. Show that $(x-1)$ is a factor of $x^{3}-6 x^{2}+11 x-6$
b. Hence factorise $x^{3}-6 x^{2}+11 x-6$
3. Show that when $4 x^{3}-6 x^{2}+5$ is divided by $(2 x-1)$ the remainder is 4
4. Divide $x^{3}+1$ by $(x+1)$
5. Find the quotient and the remainder when $x^{4}+2 x^{3}+3 x^{2}+7$ is divided by $x^{2}+x+1$
6. Find the quotient and the remainder when $2 x^{3}+3 x^{2}-4 x+5$ is divided by $(x+2)$
7. a. Show that $(2 x-1)$ is a factor of $12 x^{3}+16 x^{2}-5 x-3$
b. Hence factorise $12 x^{3}+16 x^{2}-5 x-3$
8. The expression $2 x^{3}-5 x^{2}-16 x+k$ has a remainder of -6 when divided by $(x-4)$. Find the value of k
9. When $x^{5}+4 x^{4}-6 x^{2}+a x+3$ is divided by $(x+2)$ the remainder is 5 . Find the value of a
10. When $a x^{3}+16 x^{2}-5 x-5$ is divided by $(2 x-1)$ the remainder is -2 . Find the value of a
11. The polynomial $4 x^{3}-4 x^{2}+a x+1$, where a is a constant, is denoted by $p(x)$. When $p(x)$ is divided by $(2 x-3)$ the remainder is 13 . Find the value of a
12. The polynomial $x^{3}+a x^{2}+b x+1$, where a and b are constants, is denoted by $p(x)$. When $p(x)$ is divided by $(x-2)$ the remainder is 9 and when $p(x)$ is divided by $(x+3)$ the remainder is 19 . Find the value of a and the value of b
13. When $5 x^{3}+a x+b$ is divided by $(x-2)$, the remainder is equal to the remainder obtained when the same expression is divided by $(x+2)$. Find the value of a
14. The polynomial $2 x^{4}+3 x^{2}-x+2$ is denoted by $p(x)$. Show that the remainder when $p(x)$ is divided by $(x+2)$ is 8 times the remainder when $p(x)$ is divided by $(x-1)$
15. The polynomial $x^{3}+a x+b$ where a, b are constant, is denoted by $p(x)$. When $p(x)$ is divided by $(x-1)$ the remainder is 14 and when $p(x)$ is divided by $(x-4)$ the remainder is 56 . Find the values of a, b
16. The polynomial $x^{3}+a x^{2}+2$, where a is a constant, denoted by $p(x)$. When $p(x)$ is divided by $(x+1)$ the remainder is one more than when $p(x)$ is divided by $(x+2)$. Find the value of a
17. When $6 x^{2}+x+7$ is divided by $(x-a)$, the remainder is equal to the remainder obtained when the same expression is divided by $(x+2 a)$, where $a \neq 0$, find value of a
18. a. Show that $(2 x-5)$ is a factor of $4 x^{3}-20 x^{2}+19 x+15$
b. Hence factorise $4 x^{3}-20 x^{2}+19 x+15$ as a product of three linear factors.
19. The polynomial $a x^{3}-3 x^{2}-5 a x-9$ is denoted by $p(x)$. It is given that $(x-a)$ is a factor of $p(x)$. Find the possible values of a
20. The polynomial $3 x^{3}+2 x^{2}-b x+a$, where a and b are constants, is denoted by $p(x)$. I is given that $(x-1)$ is a factor of $p(x)$ and that when $p(x)$ is divided by $(x+1)$ the remainder is 10 . Find the values of $a \& b$.
21. The polynomial $a x^{3}+b x^{2}-5 x+3$, where a and b are constants, is denoted by $p(x)$. I is given that $(2 x-1)$ is a factor of $p(x)$ and that when $p(x)$ is divided by $(x-1)$ the remainder is -3 . Find the remainder when $p(x)$ is divided by $(x+3)$
22. Factorise $2 x^{4}+5 x^{3}-5 x-2$ as a product of four linear factors
