Indefinite integral
1.Find
a) $\int 6 x d x$
b) $\int 4 x+1 d x$
c) $\int 4 x^{-\frac{1}{2}} d x$
d) $\int 7 x^{-8} d x$
e) $\int(x+4)^{2} d x$
f) $\int \frac{4 x^{-\frac{4}{3}}}{3} d x$
g) $\int(9-6 x) d x$
h) $\int \frac{2 x+5 x^{3}}{x} d x$
i) $\int 2 x(1-x)^{2} d x$
j) $\int \frac{(2 x+1)^{2}}{\sqrt{x}} d x$
k) $\int\left(\frac{3}{\sqrt{x}}-\sqrt{x^{3}}\right) d x$

1) $\int \sqrt{x}(\sqrt{x}+5)^{2} d x$
2.Find the equation of the curve, given $\frac{d y}{d x}$ and a point on the curve
a) $\frac{d y}{d x}=3 x^{2}-6 x+2 ;(-2,-10)$
b) $\frac{d y}{d x}=(1-2 x)^{2} ;(1,8)$
c) $\frac{d y}{d x}=x(2 x+5) ;(5,-1)$
d) $\frac{d y}{d x}=\sqrt{x}(\sqrt{x}-3) ;(9,12)$
e) $\frac{d y}{d x}=\frac{9 x^{3}-3 x}{x} ;(-5,4)$
f) $\frac{d y}{d x}=(3 x-1)(5 x+2) ;(-4,-6)$
3. A curve is such that $\frac{d y}{d x}=\frac{5}{\sqrt{x}}-10 \sqrt{x^{3}}$ and the point $(1,-6)$ lies on the curve. Find the equation of the curve
4. A curve passes through the point $(7,10)$ and its gradient function is $\frac{6}{x^{3}}+2$. Find the equation of the curve
5.The curve C, with the equation $y=f(x)$ passes through the point (-$2,-1)$ and $f^{\prime}(x)=x(3-x)$. Find the equation of C in the form of $y=$ $f(x)$
6.A curve is such that $\frac{d^{2} y}{d x^{2}}=-8 x$. The curve has a maximum point when $x=1$, and the point $(2,-1)$ lies on the curve. Find the equation of the curve.
5. $f^{\prime}(x)=8 x^{3}-4+3 x^{-\frac{1}{2}}$ and $f(4)=3$, find $f(x)$
6. Given that $\frac{d^{2} y}{d x^{2}}=-3 x+2$ and that when $x=-1 \cdot \frac{d y}{d x}=5, y=0$, find y in terms of x
9.The curve C passes through the point $(3,10)$ and its gradient at any point is given by $\frac{d y}{d x}=6 x^{2}-4 x+3$
a) find the equation of the curve C
b) show that the point $(2,-21)$ lies on the curve
7. A curve is such that $\frac{d^{2} y}{d x^{2}}=6 x$. The curve has a maximum point when $x=-1$ and the point $(3,-2)$ lies on the curve. Find the equation of the curve.
8. The gradient of a curve is given by $\frac{d y}{d x}=a x+b$. Given that the curve passes through $(0,0),(1,1)$ and $(-2,16)$, find the equation of the curve.
9. Find these integrals
a) $\int(2 x-1)^{6} d x$
b) $\int(4-3 x)^{8} d x$
c) $\int(5 x+2)^{5} d x$
d) $\int \frac{1}{(3 x+5)^{5}} d x$
e) $\int \frac{15}{(1-3 x)^{6}} d x$
f) $\int \frac{2}{(5+2 x)^{9}} d x$
g) $\int \frac{3}{\sqrt{7 x+1}} d x$
h) $\int \frac{6}{\sqrt{(6 x-5)^{3}}} d x$
i) $\int \frac{1}{\sqrt[3]{(7-x)}} d x$
j) $\int 3 \sqrt{(1-x)} d x$
k) $\int \frac{4}{(1-2 x)^{7}} d x$
1) $\int\left[\sqrt{(2+3 x)}^{5} d x\right.$
13.A curve passes though the point $(1,5)$ and its gradient function $(3 x-4)^{5}$. Find the equation of the curve.
14. A curve is such that $\frac{d y}{d x}=(7-x)^{4}$ and the point $(5,-3)$ lies on the curve. Find the equation of the curve.
15. $f^{\prime}(x)=\frac{1}{(5 x-3)^{4}}$ and $f(1)=-90$. Find $f(x)$.
16. $\frac{d^{2} y}{d x^{2}}=\left(\frac{1}{4} x+1\right)^{7}$. When $x=4, \frac{d y}{d x}=6$ and when $x=4, y=0$. Find y in terms of x .
