Differentiation 3

1. Find the coordinates of the stationary points of the curve $y=t^{\frac{1}{2}}\left(\frac{3}{4}-t\right)$ and determine their nature
2. Find the coordinates of the stationary points of the curve $y=(3 x-2)^{3}-9 x$ and determine their nature
3.Find the coordinates of the stationary points of the curve $y=\frac{1+54 x^{3}}{x^{2}}$ and determine their nature
3. Find the coordinates of the stationary points of the curve $y=x^{4}-2 x^{3}+x^{2}-2$ and determine their nature. Sketch the curve
4. Show that the curve $y=3 x^{3}-5 x^{2}+3 x+4$ has no stationary points
5. $f(x)=3 x^{2}+2 x+5, g(x)=x^{3}-4 x^{2}-3 x+6$
a. Show that there is one value of x for which $f(x)$ and $g(x)$ have the same stationary value
b. On the same axes sketch the graph of $f(x)$ and $g(x)$
7.The curve $y=a x^{2}+b x+c$ has a minimum when $x=\frac{1}{2}$ and passes through the points $(2,0)$ and $(1,-3)$. Find the values of a, b and c
8.A farmer has a rectangular piece of land for pigs. One of the sides of the rectangle is a wall. The other three sides have fencing. The fencing is 80 m in length. Find the maximum possible area of this rectangular piece of land 9.An open box with a square bas has a total surface of $300 \mathrm{~cm}^{2}$. Find the greatest possible volume of the box

6. Figure one shows a square sheet of metal of side 40 cm . A square x cm by xcm is cut from each corner. The sides are then bent upwards to form an open box as shown in figure 2 . Find the value of x that maximizes the volume of the box

7. Given that $x+y=3$, find the least possible value of $x^{2}+14 y$
12.The diagram shows a sporting track made up of a rectangle with semicircles at each end. The rectangle has dimensions p metres by $2 r$ metres where r is the radius of each semicircle. The perimeter of the track is 1400 m . The track has a maximum area for this perimeter. Find the value of p and the value of r.

13.Find the maximum possible value of $x^{2} y$ if $x+2 y=8$
14.A cylinder with an open top has radius rcm and a volume of $512 \pi \mathrm{~cm}^{3}$.
a. Write down the surface area of the cylinder in terms of r
b. Find the minimum surface are. Leave your answer in terms of π
c. Find the value of r and the height of the cylinder
15.a sector of a circle, radius r has a perimeter of 20 cm . The angle of the sector is θ radians and the area is $A c m^{2}$. Find the maximum possible area of the sector.
16.A tank in the shape of a right circular cylinder with no top has a surface area of $3 \pi \mathrm{~m}^{2}$. What height and base radius will maximize the volume of the cylinder?
17.The diagram shows a semicircle on top of a rectangle. The perimeter of the shape is 20 cm . Find the maximum area of the rectangle.

8. $w=p q$ and $2 p+5 q=100$. Find the maximum value of W .
19.A spherical balloon is being blown up so that its radius increases at a rate of $0.4 \mathrm{~cm} \mathrm{~s}^{-1}$. Find the rate of increase of the surface area of the balloon when the radius is 20 cm .

Differentiation 3
20.The radius of a circular ink blob is increasing at a rate of $5 \mathrm{~cm} \mathrm{~s}^{-1}$. Find the exact rate of increase of the circumference of the circle.
21.The side of a cube is increasing at $0.2 \mathrm{~ms}^{-1}$. Find the rate of increase of the volume when the length of the side is 4 cm .
22.A spherical balloon is inflated so that its volume increases at the rate of $50 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. Find the rate of increase of the radius of the balloon when the radius is 12 cm .
23.The side of a cube is decreasing at a rate of $0.4 \mathrm{~cm} \mathrm{~s}^{-1}$. Find the rate of decrease of the surface area when the length of the side is 3 cm .
24.A cone has a height of 7 cm . The radius of the base of the cone is increasing at a rate of $8 \mathrm{~cm} \mathrm{~s}^{-1}$. Find the rate of change of the volume of the cone when the base radius is 5 cm .
25.The volume of a cube is increasing at the rate of $12 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. Find the rate of increase of the surface area of the cube when the side of the cube is 7 cm .
26.The surface area of a cube is increasing at $0.3 \mathrm{~m}^{2} \mathrm{~s}^{-1}$. Find the rate of increase of the volume of the cube when the length of the side is 5 m .
27.A cuboid has a square base. The height of the cuboid is twice the length of the side of the base. The surface area of the cuboid is increasing at a rate of $10 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$. Find the rate of increase of the volume of the cuboid when the height of the cuboid is 12 cm .

