Implicit function

1.	If $2x^2 - 3y^2 = 2xy$, find $\frac{dy}{dx}$
2.	Find $\frac{dy}{dx}$ in terms of x and y if $x^2 \sin y + 2x = y$
3.	Find the value of $\frac{dy}{dx}$ at the point (4,2) which lies on the curve $x^2 - xy - y^2 - 2y = 0$
4.	Given the implicit function $2x^3 - 3x^2y - 4xy^2 = 5$, find $\frac{dy}{dx}$ in terms of x and y
5.	Given the implicit function $xe^x + y \ln x = 5$, find $\frac{dy}{dx}$ in terms of x and y
6.	Find the value of $\frac{dy}{dx}$ at the point (-1,2) which lies on the curve $2x^2 + 3y^2 - 6xy = 26$
7.	Given that $y = a^x$, where a is a real number, find $\frac{dy}{dx}$ in terms of a and x
8.	Given that $y = tan^{-1}x$, find $\frac{dy}{dx}$
9.	Given that $y = \frac{\cos x}{e^{2x}}$, show that $5y + 4\frac{dy}{dx} + \frac{d^2y}{dx^2} = 0$
10.	Given that $y = \frac{1}{\sin x'}$ show that $y \frac{d^2 y}{dx^2} = y^2 + 2(\frac{dy}{dx})^2$
11.	Find $\frac{dy}{dx}$ for $x^2 - y^2 = 4xy + 1$
12.	Find $\frac{dy}{dx}$ for $(x + y)^4 + 6x^2 = 3$
13.	Given the function $3x^2 + y^2 = 7$. Express $\frac{d^2y}{dx^2}$ in terms of y
14.	Given that $y^{xy} = 2e^y + e^x$, find $\frac{dy}{dx}$ at y=1
15.	Given that $x^2y = a \cos bx$, where a and b are constants. Show that $x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + (b^2x^2 + 2)y = 0$
16.	Given that $sin(x + y) = y^3 cos x$. Find $\frac{dy}{dx}$ if $x = y = \frac{\pi}{4}$
17.	Given that $\tan x + \tan y = 5$. Find the value of $\frac{dy}{dx}$ when $x = \frac{1}{4}\pi$
18.	A curve is defined by the equation $x^3 + y^3 + 3xy - 15 = 0$. Find the gradient of this curve at the point (1,2)
19.	Given that $3x^2 + xy + y^2 = 132$. Find the coordinates of the points on the curve at which the tangent is
	parallel to the x-axis.
20.	A curve C is defined by the equation $y^3 + y^2 + y = x^2 - 2x$. Find the equations of the tangent and normal
	to the curve C at the point (-1,1)

21. The curve y(x + y) = 1 + sn x intersects the positive y-axis at point N. Show that the tangent of the curve at point N is parallel to the x-axis

- 22. A curve is defined by the equation $2y = x^2 + \sin y$
 - a. Find $\frac{dy}{dx}$ in terms of x and y
 - b. Show that the gradient of the equation is defined at every point on the curve