Implicit function

1. If $2 x^{2}-3 y^{2}=2 x y$, find $\frac{d y}{d x}$
2. Find $\frac{d y}{d x}$ in terms of x and y if $x^{2} \sin y+2 x=y$
3. Find the value of $\frac{d y}{d x}$ at the point $(4,2)$ which lies on the curve $x^{2}-x y-y^{2}-2 y=0$
4. Given the implicit function $2 x^{3}-3 x^{2} y-4 x y^{2}=5$, find $\frac{d y}{d x}$ in terms of x and y
5. Given the implicit function $x e^{x}+y \ln x=5$, find $\frac{d y}{d x}$ in terms of x and y
6. Find the value of $\frac{d y}{d x}$ at the point $(-1,2)$ which lies on the curve $2 x^{2}+3 y^{2}-6 x y=26$
7. Given that $y=a^{x}$, where a is a real number, find $\frac{d y}{d x}$ in terms of a and x
8. Given that $y=\tan ^{-1} x$, find $\frac{d y}{d x}$
9. Given that $y=\frac{\cos x}{e^{2 x}}$, show that $5 y+4 \frac{d y}{d x}+\frac{d^{2} y}{d x^{2}}=0$
10. Given that $y=\frac{1}{\sin x^{\prime}}$ show that $\frac{d^{2} y}{d x^{2}}=y^{2}+2\left(\frac{d y}{d x}\right)^{2}$
11. Find $\frac{d y}{d x}$ for $x^{2}-y^{2}=4 x y+1$
12. Find $\frac{d y}{d x}$ for $(x+y)^{4}+6 x^{2}=3$
13. Given the function $3 x^{2}+y^{2}=7$. Express $\frac{d^{2} y}{d x^{2}}$ in terms of y
14. Given that $y^{x y}=2 e^{y}+e^{x}$, find $\frac{d y}{d x}$ at $\mathrm{y}=1$
15. Given that $x^{2} y=a \cos b x$, where a and b are constants. Show that $x^{2} \frac{d^{2} y}{d x^{2}}+4 x \frac{d y}{d x}+\left(b^{2} x^{2}+2\right) y=0$
16. Given that $\sin (x+y)=y^{3} \cos x$.Find $\frac{d y}{d x}$ if $x=y=\frac{\pi}{4}$
17. Given that $\tan x+\tan y=5$. Find the value of $\frac{d y}{d x}$ when $x=\frac{1}{4} \pi$
18. A curve is defined by the equation $x^{3}+y^{3}+3 x y-15=0$. Find the gradient of this curve at the point $(1,2)$
19. Given that $3 x^{2}+x y+y^{2}=132$. Find the coordinates of the points on the curve at which the tangent is parallel to the x-axis.
20. A curve C is defined by the equation $y^{3}+y^{2}+y=x^{2}-2 x$. Find the equations of the tangent and normal to the curve C at the point $(-1,1)$
21. The curve $y(x+y)=1+\operatorname{sn} x$ intersects the positive y-axis at point N . Show that the tangent of the curve at point N is parallel to the x -axis
22. A curve is defined by the equation $2 y=x^{2}+\sin y$
a. Find $\frac{d y}{d x}$ in terms of x and y
b. Show that the gradient of the equation is defined at every point on the curve
