Coordinate Geometry 2

1. A point P moves along the circumference of a circle with center $Q(1,4)$. The circumference passes through point $\mathrm{R}(5,-3)$ and point $\mathrm{S}(\mathrm{h}, 8)$.
a. Find
i. Th equation of locus of the point P
ii. The values of h
b. The tangent to the circle at point R intercept x -axis at point T. Find the area of the triangle RQT.
2. In the diagram, $\angle \mathrm{PQR}=90^{\circ}$, the equation of the line QR is $3 y+2 x=9$ and the coordinates of point P is $(-7,-1)$.
a. Find

i. The equation of the straight line PQ
ii. The coordinate of the point Q
b. The straight line $P Q$ is extended to a point S such that $P Q: Q S=1: 2$. Find the coordinates of S
c. A point K moves such that its distance from point Q is always 3 units. Find the equation of the locus of K
3. The diagram shows the triangle $O P R$ sucht hat O is the origin.

Point Q lies on the straight line PR.
$R(15,-5)$
a. Calculate the area, in unit ${ }^{2}$, of the triangle OPR
b. Find the coordinates of point Q , given $\mathrm{PQ}: \mathrm{QR}=1: 2$
c. Given that a point $\mathrm{A}(\mathrm{x}, \mathrm{y})$ moves such that its distance from point R is twice the distance from point P
i. Find the equation of the locus of A
ii. Hence, determine whether or not the locus of A intersects the x -axis
4. A straight line $3 y+2 x=12$ intersects the y-axis and x-axis at point A and point B respectively.
a. Find the coordinates of point A and point B
b. Find the equation of the perpendicular bisector of the straight line AB
c. Given point P moves such that $\mathrm{AP}: \mathrm{PB}=1: 2$, find the equation of the locus of P
5. The diagram shows a triangle ABC

a. Calculate the area, in unit ${ }^{2}$, of triangle ABC
b. Find the equation of the straight lines $A B$ and $B C$
c. Hence, determine whether the straight lines AB and BC are perpendicular.
6. The diagram shows a triangle PQR

The Equations of the straight lines PQ, QR and PR are $y+2 x=6,3 y+x+7=0$ and $y=3 x+$ 11 respectively.
a. Find the coordinates of the points P, Q and R
b. Calculate the area of the triangle PQR
c. A point K moves such that its distance from R is thrice its distance from Q. Find the equation of the locus of K
7. The diagram shows a straight line AB

Point H is a point on the straight line AB such that $\mathrm{AH}: \mathrm{HB}=3: 2$
a. Determine the coordinates of the point H
b. Find the equation of the straight line that passes through the point H and perpendicular to the line $A B$
c. A point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ moves such that $\angle \mathrm{APB}=90^{\circ}$. Find the equation of the locus of P
8. $\mathrm{H}(3,1)$ and $\mathrm{J}(-5,2)$ are two points on the Cartesian plane. A point P moves such that $\mathrm{PO}=\mathrm{PJ}$.
a. Determine the equation of the locus of P
b. Find the equation of the straight line that is perpendicular to the straight line OH and passes through point H . Hence, determine the point K which is the point of intersection between the line that is perpendicular to OH and the x -axis.
c. Calculate the area, in unit ${ }^{2}$ of the triangle HJK

Coordinate Geometry 2

9. The diagram shows a parallelogram ABCD

Given that the equation of the straight line BC is $y=2 x-5$ and M is the point of intersection between the diagonals AC and BD
a. Find the equation of the straight line AD
b. Determine the coordinates of the point M
c. Calculate the area, in unit ${ }^{2}$, of the parallelogram ABCD
10.

In the diagram, the equation of the straight line PQ and QR are $3 y=2 x+18$ and $2 y+3 x+14=$ 0 respectively. Q is the point of intersection between straight lines PQ and QR .
a. Find the coordinates of point Q
b. Show that the straight line PQ is perpendicular to the straight line QR
c. The straight line PQ is extended to a point S such that $\mathrm{PQ}: Q S=2: 3$. Find the coordinates of point S. Hence, calculate the area of the triangle PSR.
11. Point $\mathrm{A}(-2,5), \mathrm{B}(4,4) \mathrm{C}(\mathrm{h}, \mathrm{k})$ and $\mathrm{D}(-4,-1)$ are the vertices of a parallelogram.
a. Determine the values of h and k
b. Find the equation of the perpendicular bisector to the line AC
c. Calculate area of the quadrilateral ABOD , where O is the origin on the Cartesian plane
12. In the diagram, the straight line PTR and QTS intersect each other at point T

Point T is the midpoint of the straight line SQ and divides the line PR in the ratio of 4:3.
a. Find the coordinates of point T and R
b. Find the equations of the straight lines PS and QR
c. Hence, find the point of intersection between straight line PS and QR

