1. Given that the points $\mathrm{P}(2,3), \mathrm{Q}(-1,7)$ and $\mathrm{R}(3,0)$ are the vertices of a triangle PQR , find the perimeter of the triangle.
2. Given the points $A(3 h, h), B(3,11)$ and the distance between point A and B is 10 units, find the possible values of h
3. Points $T(0, k)$ and $V(-4,3)$ are two points that are equidistant from the origin. Find the value of k
4. Given that points $\mathrm{P}(-6,4)$ or $(r, 0), \mathrm{R}(-3,2)$ and $\mathrm{S}(-2.6)$ are four points on the Cartesian plane, find the value of r if the distance of $P Q$ is equal to the distance of RS.
5. The diagram shows two points on a Cartesian plane.

Given that the distance between point A and point B is 20 units, find the possible values of h .
6. Given that $\mathrm{A}(\mathrm{h}, 4), \mathrm{B}(-5, \mathrm{k})$ and $\mathrm{C}(1,1)$ are three points on a straight line in a Cartesian plane, find the values of h and k if C is the midpoint of A and B.
7. The diagram shows a parallelogram ABCD on a Cartesian plane.

8. Given that the points $\mathrm{P}(\mathrm{x}, 7), \mathrm{Q}(3,7), \mathrm{R}(3, y)$ and $\mathrm{S}(-5,-5)$ are vertices of a parallelogram, find the values of x and y
9. Given the points $\mathrm{A}(\mathrm{h}, 4), \mathrm{B}(5,-1)$ and $\mathrm{C}(7, \mathrm{k})$ are three points on a straight line in a Cartesian plane, find the values of h and k if point C divides AB in the ratio of 3:2.
10. Given that point $T(1,4)$ divides the straight line joining the point $\mathrm{H}(7,6)$ and $\mathrm{K}(-2,3)$ in the ratio of $\mathrm{p}: \mathrm{q}$. Find the values of p and q
11. Given that point $R(-1,8)$ is situated on the straight line joining the point $P(8,-4)$ and $Q(-4,12)$, find the ratio of PR:RQ.
12. $\mathrm{A}(4,-3), \mathrm{B}(6,-1)$, and C are the three points on a straight line. Given that $3 \mathrm{AB}=2 \mathrm{BC}$, find the coordinates of point C
13. Given that $\mathrm{A}(5,6), \mathrm{B}(5,2)$ and $\mathrm{C}(10,7)$ are three points on a Cartesian plane. Find the area of the triangle ABC .
14. Find the area of quadrilateral $P Q R S$ with vertices $P(-1,4), Q(2,2), R(0,-3)$ and $S(-1,-1)$
15. The points $\mathrm{H}(1,7), \mathrm{I}(4,3), \mathrm{J}(1,-1)$ and K are the vertices of a rhombus. Find
a. The coordinates of point k
b. The area of the rhombus HIJK

Coordinate Geometry

16. The vertices of a triangle are $\mathrm{A}(3,4), \mathrm{B}(-4,1)$ and $\mathrm{C}(1,2 h)$. If the area of the triangle ABC is 18 unit 2, find the possible values of h.
17. Given pojnts $\mathrm{A}(3 \mathrm{k}, 1), \mathrm{B}(3,4), \mathrm{C}(-2,5)$ and $\mathrm{D}(0,7)$ are collinear, find the possible values of k .
18. A triangle $A B C$ with vertices $A(k,-1) B(h, 1)$ and $C(-2,3)$ has an area of 9 unit ${ }^{2}$. Find the possible values of $2 \mathrm{~h}-\mathrm{k}$.
19. The diagram shows a quadrilateral PQRS .

If the area of quadrilateral PQRS is twice the area of the triangle PQR , find the value of k .
20. $\mathrm{H}(-3,2), \mathrm{J}(3,-2)$ and $\mathrm{K}(7,8)$ are three points on the Cartesian plane. Given point M is the midpoint of JK , find the area of the triangle HJM.
21. $\mathrm{A}(-5,1), \mathrm{B}(-1, \mathrm{k})$ and $\mathrm{C}(7,10)$ are three collinear points on a Cartesian plane. Find the value of k .
22. A straight line passes through point $A(-7,-8)$ and $B(5,11)$ on a Cartesian plane. Find the equation of the straight line AB in intercept form.
23. A straight line has a gradient of $\frac{1}{3}$ and passes through the midpoint of the line joining the points $\mathrm{P}(3,-$ 2) amd $Q(1,8)$. Find the equation of the straight line.
24. A straight line passes through the points $T(-2,1)$ and $U(1,10)$. Find the x-intercept of the straight line TU.
25. Given that the straight line $y=x+2$ and $y=-\frac{4}{3} x+\frac{1}{3}$ intersect at point A . Find the coordinates of the point A .
26. A straight line that has a gradient of $\frac{3}{2}$ and passes through point $\mathrm{P}(-2,-7)$ intersects another straight line $2 y+x=8$ at point R .
a. Find the equation of the straight line that passes through point P
b. Hence, determine the point of intersection of the two straight lines.
27. Find the equation of the straight line that is parallel to the line $\frac{x}{4}-\frac{y}{2}=1$ and passes through point $(2,1)$.
28. Given that equation of the straight lines $2 y=(h-3) x-3$ and $y-2 k x=3$ are parallel, express h in terms of k .
29. The diagram shows a triangle ABC on a Cartesian plane.

Find the equation of the straight line that is parallel to the straight line BC and passes through point A.
30. The diagram shows a parallelogram PQRS.

Find the equation of the straight line QR .
31. The equation of two straight lines on the Cartesian plane are $\frac{x}{5}+\frac{y}{2}=1$ and $5 x-2 y=8$. Determine whether the lines are perpendicular to each other.
32. Find the equation of the straight line that passes through point $\mathrm{P}(-4,1)$ and is perpendicular to the straight line $4 y-12 s+6=0$.
33. $\mathrm{X}(1,9)$ and $\mathrm{Y}(-5,-7)$ are two points on a Cartesian plane. Find the equation of the perpendicular bisector of the straight line XY.
34. The straight line $y-p x=12$ is perpendicular to straight line $2 y+q x=6$. Express p in terms of q
35. The diagram shows a straight line HK perpendicular to line JL.

Given the equation of straight line HK is $y+x-3=0$, find the point of intersection between two straight lines.
36. Given that $P(x, y)$ is a moving point such that it is equidistant from point $X(2,3)$ and point $Y(-4,5)$, find the equation of the locus of P
37. $A(-1,2)$ and $B(3,7)$ are two points on a Cartesian plane. Given that point (x, y) is a moving point such that $\mathrm{PA}: \mathrm{PB}=1: 3$, find the equation of the locus of P
38. A point P moves such that its distance from point $\mathrm{H}(-1,4)$ is always 7 units. Find the equation of the locus of P .

